三维 Voigt 规则化磁流体动力学方程的全局吸引和奇异极限

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Xuesi Kong, Xingjie Yan, Rong Yang
{"title":"三维 Voigt 规则化磁流体动力学方程的全局吸引和奇异极限","authors":"Xuesi Kong,&nbsp;Xingjie Yan,&nbsp;Rong Yang","doi":"10.1007/s00021-024-00909-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, the 3D Voigt-regularized Magnetohydrodynamic equations are considered, for which it is unknown if the uniqueness of weak solution exists. First, we prove that the uniform global attractor exists by constructing an evolutionary system. Then singular limits of this system are established. Namely, when a certain regularization parameter disappears, the convergence of global attractors is shown between the 3D autonomous Voigt-regularized Magnetohydrodynamic equations and Magnetohydrodynamic equations.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Attractor and Singular Limits of the 3D Voigt-regularized Magnetohydrodynamic Equations\",\"authors\":\"Xuesi Kong,&nbsp;Xingjie Yan,&nbsp;Rong Yang\",\"doi\":\"10.1007/s00021-024-00909-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, the 3D Voigt-regularized Magnetohydrodynamic equations are considered, for which it is unknown if the uniqueness of weak solution exists. First, we prove that the uniform global attractor exists by constructing an evolutionary system. Then singular limits of this system are established. Namely, when a certain regularization parameter disappears, the convergence of global attractors is shown between the 3D autonomous Voigt-regularized Magnetohydrodynamic equations and Magnetohydrodynamic equations.</p></div>\",\"PeriodicalId\":649,\"journal\":{\"name\":\"Journal of Mathematical Fluid Mechanics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Fluid Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00021-024-00909-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00909-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑的是三维 Voigt 规则化磁流体动力学方程,其弱解的唯一性是否存在尚不得而知。首先,我们通过构建一个演化系统来证明均匀全局吸引子的存在。然后建立了该系统的奇异极限。也就是说,当某个正则化参数消失时,三维自主 Voigt 正则化磁流体力学方程与磁流体力学方程之间的全局吸引子的收敛性得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Attractor and Singular Limits of the 3D Voigt-regularized Magnetohydrodynamic Equations

In this article, the 3D Voigt-regularized Magnetohydrodynamic equations are considered, for which it is unknown if the uniqueness of weak solution exists. First, we prove that the uniform global attractor exists by constructing an evolutionary system. Then singular limits of this system are established. Namely, when a certain regularization parameter disappears, the convergence of global attractors is shown between the 3D autonomous Voigt-regularized Magnetohydrodynamic equations and Magnetohydrodynamic equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信