Yan Xu, Fansheng Kong, Min Zhang, Hua Du, Shulin Dai, Zheyuan Zhang
{"title":"初始含水量和含盐量对钠盐黄土渗透性和微观结构的影响","authors":"Yan Xu, Fansheng Kong, Min Zhang, Hua Du, Shulin Dai, Zheyuan Zhang","doi":"10.1007/s10064-024-04006-z","DOIUrl":null,"url":null,"abstract":"<div><p>Dramatic changes in temperature and rainfall with global warming can significantly alter the moisture status of topsoil, thereby inducing soil structure degradation. However, few studies have reported the variation in permeability of saline soils during drying, which contributes to further refining the mechanism of wetting‒drying effect on soil properties. In this study, the permeability and microstructure of sodic-saline loessal soil with different initial water contents (IWCs) and salt contents (ISCs) obtained from pre-saturation and subsequent drying were explored using constant head permeability tests and SEM observations. The results show that the permeability coefficient decreases exponentially with time. The maximum permeability coefficient (<i>K</i><sub><i>max</i></sub>) of the samples decreases with decreasing IWC and ISC, while the relatively stable permeability coefficient (<i>K</i><sub><i>rs</i></sub>) is less affected. The microscopic results show that during the seepage process, the porosity and pore diameter of samples with low IWC gradually decrease, accompanied by a weakening of pore directionality and an increase in fractal dimension. In contrast, samples with high IWC show an initial increase followed by a decrease in porosity, pore diameter and pore directionality, alongside a gradual decrease in fractal dimension. The drying process promotes the formation of inter-aggregate pores and weakens aggregate stability, leading to significant microstructural disturbances in low IWC samples upon rewetting. The increase in salt content enhances particle cementation but also creates additional channels for rapid permeability. These findings carry practical implications for the prevention and control of soil erosion and engineering geohazards in saline soil regions under the impact of climate change.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of initial water and salt content on permeability and microstructure of sodic-saline loessal soils\",\"authors\":\"Yan Xu, Fansheng Kong, Min Zhang, Hua Du, Shulin Dai, Zheyuan Zhang\",\"doi\":\"10.1007/s10064-024-04006-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dramatic changes in temperature and rainfall with global warming can significantly alter the moisture status of topsoil, thereby inducing soil structure degradation. However, few studies have reported the variation in permeability of saline soils during drying, which contributes to further refining the mechanism of wetting‒drying effect on soil properties. In this study, the permeability and microstructure of sodic-saline loessal soil with different initial water contents (IWCs) and salt contents (ISCs) obtained from pre-saturation and subsequent drying were explored using constant head permeability tests and SEM observations. The results show that the permeability coefficient decreases exponentially with time. The maximum permeability coefficient (<i>K</i><sub><i>max</i></sub>) of the samples decreases with decreasing IWC and ISC, while the relatively stable permeability coefficient (<i>K</i><sub><i>rs</i></sub>) is less affected. The microscopic results show that during the seepage process, the porosity and pore diameter of samples with low IWC gradually decrease, accompanied by a weakening of pore directionality and an increase in fractal dimension. In contrast, samples with high IWC show an initial increase followed by a decrease in porosity, pore diameter and pore directionality, alongside a gradual decrease in fractal dimension. The drying process promotes the formation of inter-aggregate pores and weakens aggregate stability, leading to significant microstructural disturbances in low IWC samples upon rewetting. The increase in salt content enhances particle cementation but also creates additional channels for rapid permeability. These findings carry practical implications for the prevention and control of soil erosion and engineering geohazards in saline soil regions under the impact of climate change.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-04006-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04006-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Effects of initial water and salt content on permeability and microstructure of sodic-saline loessal soils
Dramatic changes in temperature and rainfall with global warming can significantly alter the moisture status of topsoil, thereby inducing soil structure degradation. However, few studies have reported the variation in permeability of saline soils during drying, which contributes to further refining the mechanism of wetting‒drying effect on soil properties. In this study, the permeability and microstructure of sodic-saline loessal soil with different initial water contents (IWCs) and salt contents (ISCs) obtained from pre-saturation and subsequent drying were explored using constant head permeability tests and SEM observations. The results show that the permeability coefficient decreases exponentially with time. The maximum permeability coefficient (Kmax) of the samples decreases with decreasing IWC and ISC, while the relatively stable permeability coefficient (Krs) is less affected. The microscopic results show that during the seepage process, the porosity and pore diameter of samples with low IWC gradually decrease, accompanied by a weakening of pore directionality and an increase in fractal dimension. In contrast, samples with high IWC show an initial increase followed by a decrease in porosity, pore diameter and pore directionality, alongside a gradual decrease in fractal dimension. The drying process promotes the formation of inter-aggregate pores and weakens aggregate stability, leading to significant microstructural disturbances in low IWC samples upon rewetting. The increase in salt content enhances particle cementation but also creates additional channels for rapid permeability. These findings carry practical implications for the prevention and control of soil erosion and engineering geohazards in saline soil regions under the impact of climate change.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.