原位原子观测纳米晶体中的转化孪晶

IF 13.2 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qiubo Zhang , Hui Dong , Amy Ren , Yifan Nie , Haimei Zheng
{"title":"原位原子观测纳米晶体中的转化孪晶","authors":"Qiubo Zhang ,&nbsp;Hui Dong ,&nbsp;Amy Ren ,&nbsp;Yifan Nie ,&nbsp;Haimei Zheng","doi":"10.1016/j.nantod.2024.102547","DOIUrl":null,"url":null,"abstract":"<div><div>The formation of twinning in nanocrystals impacts their physical and chemical properties. However, the pathways of transformation twinning triggered by an external stimulus is not well-understood. Here, we investigated the transformation twinning of face-centered cubic (FCC) metal nanocrystals under electron beam irradiation, utilizing transmission electron microscopy (TEM) with high spatiotemporal resolution. We found that a bi-crystal twin can form through swap motion as well as via a structural destruction-repair mechanism. The destruction-repair of crystal structure during twinning involves structure disruption, defects formation, and subsequent recrystallization. Regarding twinning through swap motion, nanocrystals maintain a relatively intact crystal structure, while crystal defects form and propagate during twin nucleation. For the transformation twinning evolving from a bi-crystal twin to fivefold twins (or the reverse processes in detwinning), twinning is accompanied by the decomposition of the twin boundaries, interface migration, and strain modulations. Our results provide new mechanistic understandings of transformation twinning in nanocrystals.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":null,"pages":null},"PeriodicalIF":13.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ atomic observation of transformation twinning in nanocrystals\",\"authors\":\"Qiubo Zhang ,&nbsp;Hui Dong ,&nbsp;Amy Ren ,&nbsp;Yifan Nie ,&nbsp;Haimei Zheng\",\"doi\":\"10.1016/j.nantod.2024.102547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The formation of twinning in nanocrystals impacts their physical and chemical properties. However, the pathways of transformation twinning triggered by an external stimulus is not well-understood. Here, we investigated the transformation twinning of face-centered cubic (FCC) metal nanocrystals under electron beam irradiation, utilizing transmission electron microscopy (TEM) with high spatiotemporal resolution. We found that a bi-crystal twin can form through swap motion as well as via a structural destruction-repair mechanism. The destruction-repair of crystal structure during twinning involves structure disruption, defects formation, and subsequent recrystallization. Regarding twinning through swap motion, nanocrystals maintain a relatively intact crystal structure, while crystal defects form and propagate during twin nucleation. For the transformation twinning evolving from a bi-crystal twin to fivefold twins (or the reverse processes in detwinning), twinning is accompanied by the decomposition of the twin boundaries, interface migration, and strain modulations. Our results provide new mechanistic understandings of transformation twinning in nanocrystals.</div></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224004031\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224004031","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ atomic observation of transformation twinning in nanocrystals
The formation of twinning in nanocrystals impacts their physical and chemical properties. However, the pathways of transformation twinning triggered by an external stimulus is not well-understood. Here, we investigated the transformation twinning of face-centered cubic (FCC) metal nanocrystals under electron beam irradiation, utilizing transmission electron microscopy (TEM) with high spatiotemporal resolution. We found that a bi-crystal twin can form through swap motion as well as via a structural destruction-repair mechanism. The destruction-repair of crystal structure during twinning involves structure disruption, defects formation, and subsequent recrystallization. Regarding twinning through swap motion, nanocrystals maintain a relatively intact crystal structure, while crystal defects form and propagate during twin nucleation. For the transformation twinning evolving from a bi-crystal twin to fivefold twins (or the reverse processes in detwinning), twinning is accompanied by the decomposition of the twin boundaries, interface migration, and strain modulations. Our results provide new mechanistic understandings of transformation twinning in nanocrystals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信