Gerald L. Chuwa , Charles H. Kasanzu , Emmanuel O. Kazimoto , Francisco E. Apen
{"title":"坦桑尼亚西北部 Karagwe Ankolean 矿带岩浆岩的微量元素地球化学和锆石 U-Pb 地质年代:对成岩学和镍铜钴勘探的影响","authors":"Gerald L. Chuwa , Charles H. Kasanzu , Emmanuel O. Kazimoto , Francisco E. Apen","doi":"10.1016/j.gexplo.2024.107614","DOIUrl":null,"url":null,"abstract":"<div><div>In northwestern Tanzania, mafic sills intruded the Akanyaru and Kagera Supergroup rocks in the Mesoproterozoic Karagwe-Ankolean Belt (KAB). Trace element geochemistry and U<img>Pb geochronology results are reported to unravel petrogenetic and geochronological evolution of the sills in order to place constraints on Ni-Cu-Co prospectivity of the KAB. The sills are subalkaline gabbronorite and dolerite. They are relatively evolved Mg# = 43–69, with transitional metal contents lower than juvenile mafic-ultramafic rocks of the Kabanga-Musongati Alignment (KMA) intrusions. The sills can be subdivided into western and eastern swarms that display similar geochemical characteristics, including enrichment in LREE (Light Rare Earth Elements), LILE (Large Ion Lithophile Elements), Pb, Th, and U relative to HFSE (High Field Strength Elements). They are characterised by depletions of Nb-Ta-Ti in primitive mantle normalised spiderplots, enrichments in LREE and relatively flat MREE and HREE with negative Eu anomalies Eu/Eu* = 0.74–0.94 in chondrite normalised REE spiderplots. Together with elemental trace element ratios Nb/Yb, Th/Yb, Zr/Nb, Ba/Nb, and Nb-Yb-Ti index suggest derivation of the mafic sills from a sub-continental lithospheric mantle source followed by fractional crystallisation and crustal contamination.</div><div>Zircon U<img>Pb geochronology yields a concordant weighted age of 1424 ± 13 Ma for a gabbronorite in the western sills and an upper age intercept of 1411 ± 54 Ma for a dolerite in the eastern sills. The emplacement ages are similar to those of the KMA and the Lake Victoria Dolerite Dyke Swarm (LVDDS). Temporal and geochemical similarities with the KMA and LVDDS supports for emplacement of the mafic sills in an intracratonic rift setting. Although the KAB sills are relatively more geochemically evolved, they share similar evolutionary path with Ni-Cu-Co mineralised juvenile KMA intrusions, sensu stricto interaction with sulphur bearing country rocks. We suggest that trace elements geochemistry including chalcophile elemental ratios (Ni/Cr and Cu/Zn) of the sills be applied as vectors to locate prospective Ni-Cu-Co targets in the KAB.</div></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"268 ","pages":"Article 107614"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trace element geochemistry and zircon U-Pb geochronology of mafic sills from the Karagwe Ankolean Belt of northwestern Tanzania: Implications for petrogenesis and Ni-Cu-Co prospectivity\",\"authors\":\"Gerald L. Chuwa , Charles H. Kasanzu , Emmanuel O. Kazimoto , Francisco E. Apen\",\"doi\":\"10.1016/j.gexplo.2024.107614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In northwestern Tanzania, mafic sills intruded the Akanyaru and Kagera Supergroup rocks in the Mesoproterozoic Karagwe-Ankolean Belt (KAB). Trace element geochemistry and U<img>Pb geochronology results are reported to unravel petrogenetic and geochronological evolution of the sills in order to place constraints on Ni-Cu-Co prospectivity of the KAB. The sills are subalkaline gabbronorite and dolerite. They are relatively evolved Mg# = 43–69, with transitional metal contents lower than juvenile mafic-ultramafic rocks of the Kabanga-Musongati Alignment (KMA) intrusions. The sills can be subdivided into western and eastern swarms that display similar geochemical characteristics, including enrichment in LREE (Light Rare Earth Elements), LILE (Large Ion Lithophile Elements), Pb, Th, and U relative to HFSE (High Field Strength Elements). They are characterised by depletions of Nb-Ta-Ti in primitive mantle normalised spiderplots, enrichments in LREE and relatively flat MREE and HREE with negative Eu anomalies Eu/Eu* = 0.74–0.94 in chondrite normalised REE spiderplots. Together with elemental trace element ratios Nb/Yb, Th/Yb, Zr/Nb, Ba/Nb, and Nb-Yb-Ti index suggest derivation of the mafic sills from a sub-continental lithospheric mantle source followed by fractional crystallisation and crustal contamination.</div><div>Zircon U<img>Pb geochronology yields a concordant weighted age of 1424 ± 13 Ma for a gabbronorite in the western sills and an upper age intercept of 1411 ± 54 Ma for a dolerite in the eastern sills. The emplacement ages are similar to those of the KMA and the Lake Victoria Dolerite Dyke Swarm (LVDDS). Temporal and geochemical similarities with the KMA and LVDDS supports for emplacement of the mafic sills in an intracratonic rift setting. Although the KAB sills are relatively more geochemically evolved, they share similar evolutionary path with Ni-Cu-Co mineralised juvenile KMA intrusions, sensu stricto interaction with sulphur bearing country rocks. We suggest that trace elements geochemistry including chalcophile elemental ratios (Ni/Cr and Cu/Zn) of the sills be applied as vectors to locate prospective Ni-Cu-Co targets in the KAB.</div></div>\",\"PeriodicalId\":16336,\"journal\":{\"name\":\"Journal of Geochemical Exploration\",\"volume\":\"268 \",\"pages\":\"Article 107614\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geochemical Exploration\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375674224002309\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674224002309","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Trace element geochemistry and zircon U-Pb geochronology of mafic sills from the Karagwe Ankolean Belt of northwestern Tanzania: Implications for petrogenesis and Ni-Cu-Co prospectivity
In northwestern Tanzania, mafic sills intruded the Akanyaru and Kagera Supergroup rocks in the Mesoproterozoic Karagwe-Ankolean Belt (KAB). Trace element geochemistry and UPb geochronology results are reported to unravel petrogenetic and geochronological evolution of the sills in order to place constraints on Ni-Cu-Co prospectivity of the KAB. The sills are subalkaline gabbronorite and dolerite. They are relatively evolved Mg# = 43–69, with transitional metal contents lower than juvenile mafic-ultramafic rocks of the Kabanga-Musongati Alignment (KMA) intrusions. The sills can be subdivided into western and eastern swarms that display similar geochemical characteristics, including enrichment in LREE (Light Rare Earth Elements), LILE (Large Ion Lithophile Elements), Pb, Th, and U relative to HFSE (High Field Strength Elements). They are characterised by depletions of Nb-Ta-Ti in primitive mantle normalised spiderplots, enrichments in LREE and relatively flat MREE and HREE with negative Eu anomalies Eu/Eu* = 0.74–0.94 in chondrite normalised REE spiderplots. Together with elemental trace element ratios Nb/Yb, Th/Yb, Zr/Nb, Ba/Nb, and Nb-Yb-Ti index suggest derivation of the mafic sills from a sub-continental lithospheric mantle source followed by fractional crystallisation and crustal contamination.
Zircon UPb geochronology yields a concordant weighted age of 1424 ± 13 Ma for a gabbronorite in the western sills and an upper age intercept of 1411 ± 54 Ma for a dolerite in the eastern sills. The emplacement ages are similar to those of the KMA and the Lake Victoria Dolerite Dyke Swarm (LVDDS). Temporal and geochemical similarities with the KMA and LVDDS supports for emplacement of the mafic sills in an intracratonic rift setting. Although the KAB sills are relatively more geochemically evolved, they share similar evolutionary path with Ni-Cu-Co mineralised juvenile KMA intrusions, sensu stricto interaction with sulphur bearing country rocks. We suggest that trace elements geochemistry including chalcophile elemental ratios (Ni/Cr and Cu/Zn) of the sills be applied as vectors to locate prospective Ni-Cu-Co targets in the KAB.
期刊介绍:
Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics.
Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to:
define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas.
analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation.
evaluate effects of historical mining activities on the surface environment.
trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices.
assess and quantify natural and technogenic radioactivity in the environment.
determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis.
assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches.
Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.