Yangxi Yan , Jiejie Hui , Xiaoying Wang , Dongyan Zhang , Maolin Zhang , Mo Zhao , Meng Wan , Li Jin , Zhimin Li
{"title":"通过成分改性提高 BNT 基陶瓷的储能性能","authors":"Yangxi Yan , Jiejie Hui , Xiaoying Wang , Dongyan Zhang , Maolin Zhang , Mo Zhao , Meng Wan , Li Jin , Zhimin Li","doi":"10.1016/j.ceramint.2024.09.361","DOIUrl":null,"url":null,"abstract":"<div><div>Lead-free ceramic capacitors are extensively utilized in pulsed power systems for their environmentally friendly characteristics, high power density, and fast charging/discharging rate. However, it remains highly challenging to achieve concurrent improvements in both recoverable energy storage density (<em>W</em><sub>rec</sub>) and efficiency (<em>η</em>). In this study, Ta<sub>2</sub>O<sub>5</sub> with a wide bandgap (∼4 eV) was chosen in complex with Mg<sup>2+</sup> ions to form Ba(Mg<sub>1/3</sub>Ta<sub>2/3</sub>)O<sub>3</sub> as the second phase of a BNT-based solid solution. Combined with phase modulation, a compositional disorder of equipotential sites is formed in chalcogenide crystals, which in turn induces charge disorder generating localized random fields. We have designed and prepared a set of binary (1-x)Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>-xBa(Mg<sub>1/3</sub>Ta<sub>2/3</sub>)O<sub>3</sub> (BNT-xBMT) ceramics using a conventional solid-phase method. An ultra-high breakdown field strength (E<sub>b</sub>) value (245 kV/cm) was attained in 0.80BNT-0.20BMT ceramic, resulting in desirable values of <em>W</em><sub>rec</sub> (3.99 J/cm<sup>3</sup>) and <em>η</em> (92.0 %). These results offer a new strategy for designing high entropy ceramic materials of high performance in the future.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"50 23","pages":"Pages 48918-48930"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of energy storage properties of BNT-based ceramics via compositional modification\",\"authors\":\"Yangxi Yan , Jiejie Hui , Xiaoying Wang , Dongyan Zhang , Maolin Zhang , Mo Zhao , Meng Wan , Li Jin , Zhimin Li\",\"doi\":\"10.1016/j.ceramint.2024.09.361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lead-free ceramic capacitors are extensively utilized in pulsed power systems for their environmentally friendly characteristics, high power density, and fast charging/discharging rate. However, it remains highly challenging to achieve concurrent improvements in both recoverable energy storage density (<em>W</em><sub>rec</sub>) and efficiency (<em>η</em>). In this study, Ta<sub>2</sub>O<sub>5</sub> with a wide bandgap (∼4 eV) was chosen in complex with Mg<sup>2+</sup> ions to form Ba(Mg<sub>1/3</sub>Ta<sub>2/3</sub>)O<sub>3</sub> as the second phase of a BNT-based solid solution. Combined with phase modulation, a compositional disorder of equipotential sites is formed in chalcogenide crystals, which in turn induces charge disorder generating localized random fields. We have designed and prepared a set of binary (1-x)Bi<sub>0.5</sub>Na<sub>0.5</sub>TiO<sub>3</sub>-xBa(Mg<sub>1/3</sub>Ta<sub>2/3</sub>)O<sub>3</sub> (BNT-xBMT) ceramics using a conventional solid-phase method. An ultra-high breakdown field strength (E<sub>b</sub>) value (245 kV/cm) was attained in 0.80BNT-0.20BMT ceramic, resulting in desirable values of <em>W</em><sub>rec</sub> (3.99 J/cm<sup>3</sup>) and <em>η</em> (92.0 %). These results offer a new strategy for designing high entropy ceramic materials of high performance in the future.</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"50 23\",\"pages\":\"Pages 48918-48930\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884224043967\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884224043967","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Improvement of energy storage properties of BNT-based ceramics via compositional modification
Lead-free ceramic capacitors are extensively utilized in pulsed power systems for their environmentally friendly characteristics, high power density, and fast charging/discharging rate. However, it remains highly challenging to achieve concurrent improvements in both recoverable energy storage density (Wrec) and efficiency (η). In this study, Ta2O5 with a wide bandgap (∼4 eV) was chosen in complex with Mg2+ ions to form Ba(Mg1/3Ta2/3)O3 as the second phase of a BNT-based solid solution. Combined with phase modulation, a compositional disorder of equipotential sites is formed in chalcogenide crystals, which in turn induces charge disorder generating localized random fields. We have designed and prepared a set of binary (1-x)Bi0.5Na0.5TiO3-xBa(Mg1/3Ta2/3)O3 (BNT-xBMT) ceramics using a conventional solid-phase method. An ultra-high breakdown field strength (Eb) value (245 kV/cm) was attained in 0.80BNT-0.20BMT ceramic, resulting in desirable values of Wrec (3.99 J/cm3) and η (92.0 %). These results offer a new strategy for designing high entropy ceramic materials of high performance in the future.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.