基于参数输入物理信息神经网络的自然对流直接数值模拟

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Shuran Ye , Jianlin Huang , Zhen Zhang , Yiwei Wang , Chenguang Huang
{"title":"基于参数输入物理信息神经网络的自然对流直接数值模拟","authors":"Shuran Ye ,&nbsp;Jianlin Huang ,&nbsp;Zhen Zhang ,&nbsp;Yiwei Wang ,&nbsp;Chenguang Huang","doi":"10.1016/j.ijheatmasstransfer.2024.126379","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal convection is frequently observed in nature and widely used in industry, making it an important subject for many experimental and numerical studies. A well-researched paradigm for comprehending thermal convection is the system of thermally driven square cavities, one of the classical problems of natural convection. With the development of computational resources, methods for solving natural convection problems using deep learning techniques have flourished. In this study, a Physics-informed neural networks (PINNs) method is used to solve the thermal convection problem, with neural networks trained to simulate the velocity and temperature fields of natural convection at various Ra numbers ranging from <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span>. Furthermore, a parameter-input PINNs model is constructed to further develop this approach. This framework has the advantage of concurrently and rapidly predicting the flow field outcomes for any Ra number scenario in the specified range. Additionally, the flow field outcomes of the parameter-input PINNs model are statistically analyzed to demonstrate the model’s generalization performance.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"236 ","pages":"Article 126379"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct numerical simulation of natural convection based on parameter-input physics-informed neural networks\",\"authors\":\"Shuran Ye ,&nbsp;Jianlin Huang ,&nbsp;Zhen Zhang ,&nbsp;Yiwei Wang ,&nbsp;Chenguang Huang\",\"doi\":\"10.1016/j.ijheatmasstransfer.2024.126379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermal convection is frequently observed in nature and widely used in industry, making it an important subject for many experimental and numerical studies. A well-researched paradigm for comprehending thermal convection is the system of thermally driven square cavities, one of the classical problems of natural convection. With the development of computational resources, methods for solving natural convection problems using deep learning techniques have flourished. In this study, a Physics-informed neural networks (PINNs) method is used to solve the thermal convection problem, with neural networks trained to simulate the velocity and temperature fields of natural convection at various Ra numbers ranging from <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> to <span><math><mrow><mi>R</mi><mi>a</mi><mo>=</mo><msup><mrow><mn>10</mn></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span>. Furthermore, a parameter-input PINNs model is constructed to further develop this approach. This framework has the advantage of concurrently and rapidly predicting the flow field outcomes for any Ra number scenario in the specified range. Additionally, the flow field outcomes of the parameter-input PINNs model are statistically analyzed to demonstrate the model’s generalization performance.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"236 \",\"pages\":\"Article 126379\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931024012080\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024012080","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

热对流在自然界中观察频繁,在工业中应用广泛,因此成为许多实验和数值研究的重要课题。热对流的一个研究范例是热驱动方形空腔系统,它是自然对流的经典问题之一。随着计算资源的发展,利用深度学习技术解决自然对流问题的方法蓬勃发展。本研究采用物理信息神经网络(PINNs)方法求解热对流问题,训练神经网络模拟从 Ra=103 到 Ra=108 的不同 Ra 数下自然对流的速度场和温度场。此外,还构建了一个参数输入 PINNs 模型,以进一步发展这种方法。该框架的优势在于可同时快速预测指定范围内任何 Ra 数情况下的流场结果。此外,还对参数输入 PINNs 模型的流场结果进行了统计分析,以证明该模型的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct numerical simulation of natural convection based on parameter-input physics-informed neural networks
Thermal convection is frequently observed in nature and widely used in industry, making it an important subject for many experimental and numerical studies. A well-researched paradigm for comprehending thermal convection is the system of thermally driven square cavities, one of the classical problems of natural convection. With the development of computational resources, methods for solving natural convection problems using deep learning techniques have flourished. In this study, a Physics-informed neural networks (PINNs) method is used to solve the thermal convection problem, with neural networks trained to simulate the velocity and temperature fields of natural convection at various Ra numbers ranging from Ra=103 to Ra=108. Furthermore, a parameter-input PINNs model is constructed to further develop this approach. This framework has the advantage of concurrently and rapidly predicting the flow field outcomes for any Ra number scenario in the specified range. Additionally, the flow field outcomes of the parameter-input PINNs model are statistically analyzed to demonstrate the model’s generalization performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信