Maria Ignacia Rodriguez Escobar , Erasmo Cadena , Trang T. Nhu , Sophie Huysveld , Stefaan De Smet , Jo Dewulf
{"title":"资源利用效率:开发蛋白质生产系统通用框架及其在奶制品和鱼类中的应用","authors":"Maria Ignacia Rodriguez Escobar , Erasmo Cadena , Trang T. Nhu , Sophie Huysveld , Stefaan De Smet , Jo Dewulf","doi":"10.1016/j.fufo.2024.100496","DOIUrl":null,"url":null,"abstract":"<div><div>Resource use efficiency has become increasingly important as the global demand for natural resources continues to grow, necessitating innovative and sustainable utilization strategies. Despite the availability of tools to quantify resource use and environmental impacts, an integrated assessment of total resource use efficiency remains underdeveloped. Addressing this gap, particularly within the context of the protein transition from animal-based to plant-based sources, this work introduces a novel resource efficiency framework. This framework advances current environmental assessments by enabling the precise calculation of efficiency in protein production processes and process chains based on comprehensive resource utilization metrics. It uniquely incorporates the nature of process inputs, including their renewability and circularity, and supports both foreground and life cycle perspectives at the process and process chain levels. To demonstrate its applicability, two case studies—fish and dairy production systems—are evaluated using exergy and mass analyses.</div></div>","PeriodicalId":34474,"journal":{"name":"Future Foods","volume":"10 ","pages":"Article 100496"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource use efficiency: Developing a generic framework for protein production systems and its application on dairy and fish\",\"authors\":\"Maria Ignacia Rodriguez Escobar , Erasmo Cadena , Trang T. Nhu , Sophie Huysveld , Stefaan De Smet , Jo Dewulf\",\"doi\":\"10.1016/j.fufo.2024.100496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Resource use efficiency has become increasingly important as the global demand for natural resources continues to grow, necessitating innovative and sustainable utilization strategies. Despite the availability of tools to quantify resource use and environmental impacts, an integrated assessment of total resource use efficiency remains underdeveloped. Addressing this gap, particularly within the context of the protein transition from animal-based to plant-based sources, this work introduces a novel resource efficiency framework. This framework advances current environmental assessments by enabling the precise calculation of efficiency in protein production processes and process chains based on comprehensive resource utilization metrics. It uniquely incorporates the nature of process inputs, including their renewability and circularity, and supports both foreground and life cycle perspectives at the process and process chain levels. To demonstrate its applicability, two case studies—fish and dairy production systems—are evaluated using exergy and mass analyses.</div></div>\",\"PeriodicalId\":34474,\"journal\":{\"name\":\"Future Foods\",\"volume\":\"10 \",\"pages\":\"Article 100496\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Foods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666833524002004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666833524002004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Resource use efficiency: Developing a generic framework for protein production systems and its application on dairy and fish
Resource use efficiency has become increasingly important as the global demand for natural resources continues to grow, necessitating innovative and sustainable utilization strategies. Despite the availability of tools to quantify resource use and environmental impacts, an integrated assessment of total resource use efficiency remains underdeveloped. Addressing this gap, particularly within the context of the protein transition from animal-based to plant-based sources, this work introduces a novel resource efficiency framework. This framework advances current environmental assessments by enabling the precise calculation of efficiency in protein production processes and process chains based on comprehensive resource utilization metrics. It uniquely incorporates the nature of process inputs, including their renewability and circularity, and supports both foreground and life cycle perspectives at the process and process chain levels. To demonstrate its applicability, two case studies—fish and dairy production systems—are evaluated using exergy and mass analyses.