Yanchen Liu , Yang Lu , Zongliang Zhang , Bin Xu , Fangbo He , Yang Liu , Yongle Chen , Kun Zhang , Fangyang Liu
{"title":"通过调节表层与内层之间的氧活度实现高铝容量和长寿命硫化物全固态锂电池","authors":"Yanchen Liu , Yang Lu , Zongliang Zhang , Bin Xu , Fangbo He , Yang Liu , Yongle Chen , Kun Zhang , Fangyang Liu","doi":"10.1016/j.jechem.2024.10.022","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfide-based all-solid-state lithium batteries (ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries, owing to their superior safety and energy density. However, the all-solid-state batteries with nickel-rich oxide cathodes suffer from performance degradation due to the reactions between the highly reactive surface oxygen of the cathode and the electrolyte, as well as the instability of the bulk oxygen structure in the cathode. Herein, we propose a synergistic modification design scheme to adjust the oxygen activity from surface to bulk. The LiBO<sub>2</sub> coating inhibits the reactivity of surface lattice oxygen ions. Meanwhile, Zr doping in the bulk phase forms strong Zr–O covalent bonds that stabilize the bulk lattice oxygen structure. The synergistic effect of these modifications prevents the release of oxygen, thus avoiding the degradation of the cathode/SE interface. Additionally, the regulation of surface-to-bulk oxygen activity establishes a highly stable interface, thereby enhancing the lithium ion diffusion kinetics and mechanical stability of the cathode. Consequently, cathodes modified with this synergistic strategy exhibit outstanding performance in sulfide-based ASSLBs, including an ultra-long cycle life of 100,000 cycles, ultra-high rate capability at 45C, and 85% high active material content in the composite cathode. Additionally, ASSLB exhibits stable cycling under high loading conditions of 82.82 mg cm<sup>−2</sup>, achieving an areal capacity of 17.90 mA h cm<sup>−2</sup>. These encouraging results pave the way for practical applications of ASSLBs in fast charging, long cycle life, and high energy density in the future.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"101 ","pages":"Pages 795-807"},"PeriodicalIF":13.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-areal-capacity and long-life sulfide-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity\",\"authors\":\"Yanchen Liu , Yang Lu , Zongliang Zhang , Bin Xu , Fangbo He , Yang Liu , Yongle Chen , Kun Zhang , Fangyang Liu\",\"doi\":\"10.1016/j.jechem.2024.10.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sulfide-based all-solid-state lithium batteries (ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries, owing to their superior safety and energy density. However, the all-solid-state batteries with nickel-rich oxide cathodes suffer from performance degradation due to the reactions between the highly reactive surface oxygen of the cathode and the electrolyte, as well as the instability of the bulk oxygen structure in the cathode. Herein, we propose a synergistic modification design scheme to adjust the oxygen activity from surface to bulk. The LiBO<sub>2</sub> coating inhibits the reactivity of surface lattice oxygen ions. Meanwhile, Zr doping in the bulk phase forms strong Zr–O covalent bonds that stabilize the bulk lattice oxygen structure. The synergistic effect of these modifications prevents the release of oxygen, thus avoiding the degradation of the cathode/SE interface. Additionally, the regulation of surface-to-bulk oxygen activity establishes a highly stable interface, thereby enhancing the lithium ion diffusion kinetics and mechanical stability of the cathode. Consequently, cathodes modified with this synergistic strategy exhibit outstanding performance in sulfide-based ASSLBs, including an ultra-long cycle life of 100,000 cycles, ultra-high rate capability at 45C, and 85% high active material content in the composite cathode. Additionally, ASSLB exhibits stable cycling under high loading conditions of 82.82 mg cm<sup>−2</sup>, achieving an areal capacity of 17.90 mA h cm<sup>−2</sup>. These encouraging results pave the way for practical applications of ASSLBs in fast charging, long cycle life, and high energy density in the future.</div></div>\",\"PeriodicalId\":15728,\"journal\":{\"name\":\"Journal of Energy Chemistry\",\"volume\":\"101 \",\"pages\":\"Pages 795-807\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495624007277\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624007277","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
High-areal-capacity and long-life sulfide-based all-solid-state lithium battery achieved by regulating surface-to-bulk oxygen activity
Sulfide-based all-solid-state lithium batteries (ASSLBs) with nickel-rich oxide cathodes are emerging as primary contenders for the next generation rechargeable batteries, owing to their superior safety and energy density. However, the all-solid-state batteries with nickel-rich oxide cathodes suffer from performance degradation due to the reactions between the highly reactive surface oxygen of the cathode and the electrolyte, as well as the instability of the bulk oxygen structure in the cathode. Herein, we propose a synergistic modification design scheme to adjust the oxygen activity from surface to bulk. The LiBO2 coating inhibits the reactivity of surface lattice oxygen ions. Meanwhile, Zr doping in the bulk phase forms strong Zr–O covalent bonds that stabilize the bulk lattice oxygen structure. The synergistic effect of these modifications prevents the release of oxygen, thus avoiding the degradation of the cathode/SE interface. Additionally, the regulation of surface-to-bulk oxygen activity establishes a highly stable interface, thereby enhancing the lithium ion diffusion kinetics and mechanical stability of the cathode. Consequently, cathodes modified with this synergistic strategy exhibit outstanding performance in sulfide-based ASSLBs, including an ultra-long cycle life of 100,000 cycles, ultra-high rate capability at 45C, and 85% high active material content in the composite cathode. Additionally, ASSLB exhibits stable cycling under high loading conditions of 82.82 mg cm−2, achieving an areal capacity of 17.90 mA h cm−2. These encouraging results pave the way for practical applications of ASSLBs in fast charging, long cycle life, and high energy density in the future.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy