{"title":"钢-混凝土复合梁的腹板剪切屈曲--高级数值分析","authors":"Mehmed Numanović , Markus Knobloch","doi":"10.1016/j.tws.2024.112671","DOIUrl":null,"url":null,"abstract":"<div><div>Load-bearing capacity of plate girders, often used in design of bridges and high-rise buildings, is limited by the shear capacity of connected slender plate elements subjected to shear buckling. To quantify this, experimental investigations on five large-scale steel and steel-concrete composite plate girders loaded solely in shear, with a minimal influence of bending moments, have been conducted and evaluated. In this paper, the phenomenon of web shear buckling is investigated within the numerical analysis using the ABAQUS Software. An advanced numerical model has been developed and results validated against existing experimental findings. One of the focal points of this study represents the methodology of developing such a comprehensive numerical model, implementation of suitable analysis procedures, material models, boundary conditions, finite elements and interactions, in order to correctly replicate the observed response in the tests. In addition, case studies tackling the influence of web slenderness, aspect ratio, initial imperfections, shear connection and concrete classes on the structural-mechanical behavior of steel-concrete composite girders in shear as well as the applicability and suitability of the existing analytical model are also presented and analyzed.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112671"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Web shear buckling of steel-concrete composite girders – advanced numerical analysis\",\"authors\":\"Mehmed Numanović , Markus Knobloch\",\"doi\":\"10.1016/j.tws.2024.112671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Load-bearing capacity of plate girders, often used in design of bridges and high-rise buildings, is limited by the shear capacity of connected slender plate elements subjected to shear buckling. To quantify this, experimental investigations on five large-scale steel and steel-concrete composite plate girders loaded solely in shear, with a minimal influence of bending moments, have been conducted and evaluated. In this paper, the phenomenon of web shear buckling is investigated within the numerical analysis using the ABAQUS Software. An advanced numerical model has been developed and results validated against existing experimental findings. One of the focal points of this study represents the methodology of developing such a comprehensive numerical model, implementation of suitable analysis procedures, material models, boundary conditions, finite elements and interactions, in order to correctly replicate the observed response in the tests. In addition, case studies tackling the influence of web slenderness, aspect ratio, initial imperfections, shear connection and concrete classes on the structural-mechanical behavior of steel-concrete composite girders in shear as well as the applicability and suitability of the existing analytical model are also presented and analyzed.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"206 \",\"pages\":\"Article 112671\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026382312401111X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026382312401111X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Web shear buckling of steel-concrete composite girders – advanced numerical analysis
Load-bearing capacity of plate girders, often used in design of bridges and high-rise buildings, is limited by the shear capacity of connected slender plate elements subjected to shear buckling. To quantify this, experimental investigations on five large-scale steel and steel-concrete composite plate girders loaded solely in shear, with a minimal influence of bending moments, have been conducted and evaluated. In this paper, the phenomenon of web shear buckling is investigated within the numerical analysis using the ABAQUS Software. An advanced numerical model has been developed and results validated against existing experimental findings. One of the focal points of this study represents the methodology of developing such a comprehensive numerical model, implementation of suitable analysis procedures, material models, boundary conditions, finite elements and interactions, in order to correctly replicate the observed response in the tests. In addition, case studies tackling the influence of web slenderness, aspect ratio, initial imperfections, shear connection and concrete classes on the structural-mechanical behavior of steel-concrete composite girders in shear as well as the applicability and suitability of the existing analytical model are also presented and analyzed.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.