Yohanis Tangke Tosuli , Cahyadi , Hafif Dafiqurrohman , Rudi Hermawan , Adi Surjosatyo
{"title":"在顶部升流固定床气化炉中气化西米渣废料:合成气成分及其对添加 Al2O3 催化剂的影响","authors":"Yohanis Tangke Tosuli , Cahyadi , Hafif Dafiqurrohman , Rudi Hermawan , Adi Surjosatyo","doi":"10.1016/j.ecmx.2024.100775","DOIUrl":null,"url":null,"abstract":"<div><div>Sago-based foods have become a staple food in eastern Indonesia. Sago waste, as a by-product, has the potential to be used as a renewable energy fuel. This research aims to use sago dregs waste as an energy source by converting it into renewable energy using Top Lit Updraft (TULD) fixed bed gasification. Al<sub>2</sub>O<sub>3</sub>, a potential solid waste derived from coal fly ash, is also being investigated for use in sago dreg pellets.The two various Al<sub>2</sub>O<sub>3</sub> contents in sago dreg pellets that will be examined with 5 % Al<sub>2</sub>O<sub>3</sub> and 10 % Al<sub>2</sub>O<sub>3</sub>. Operational parameters employed in the gasification process involving the TULD reactor, such as gasification temperature, air flow rate, air-to-fuel ratio (AFR), and syngas assessment. According to the results, adding Al<sub>2</sub>O<sub>3</sub> as a catalyst to sago dreg pellets can improve syngas production (H<sub>2</sub>, CO, and CH<sub>4</sub>). The most significant alteration is that the average hydrogen gas (H<sub>2</sub>) content has increased, with the greatest being in 5 % Al<sub>2</sub>O<sub>3</sub> with 31.65 %, and 10 % Al<sub>2</sub>O<sub>3</sub> with 29.94 %. Meanwhile, the CO and CH<sub>4</sub> gas content was found to be highest at 10 % Al<sub>2</sub>O<sub>3</sub>, with each experiencing an increase in average (CO 4.33 % and CH<sub>4</sub> 26.45 %) as compared to sago dregs pellets without Al<sub>2</sub>O<sub>3</sub>. Finally, sago dregs pellets with an Al<sub>2</sub>O<sub>3</sub> catalyst have a high potential as an alternative energy fuel for internal combustion engines with H<sub>2</sub>/CO of 1.65 and 1.51 respectively, for 5 % Al<sub>2</sub>O<sub>3</sub> and 10 % Al<sub>2</sub>O<sub>3</sub>, with low tar content.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100775"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gasification of sago dreg waste in a top-lit updraft fixed bed gasifier: Syngas composition and its effect with additional Al2O3 as catalyst\",\"authors\":\"Yohanis Tangke Tosuli , Cahyadi , Hafif Dafiqurrohman , Rudi Hermawan , Adi Surjosatyo\",\"doi\":\"10.1016/j.ecmx.2024.100775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sago-based foods have become a staple food in eastern Indonesia. Sago waste, as a by-product, has the potential to be used as a renewable energy fuel. This research aims to use sago dregs waste as an energy source by converting it into renewable energy using Top Lit Updraft (TULD) fixed bed gasification. Al<sub>2</sub>O<sub>3</sub>, a potential solid waste derived from coal fly ash, is also being investigated for use in sago dreg pellets.The two various Al<sub>2</sub>O<sub>3</sub> contents in sago dreg pellets that will be examined with 5 % Al<sub>2</sub>O<sub>3</sub> and 10 % Al<sub>2</sub>O<sub>3</sub>. Operational parameters employed in the gasification process involving the TULD reactor, such as gasification temperature, air flow rate, air-to-fuel ratio (AFR), and syngas assessment. According to the results, adding Al<sub>2</sub>O<sub>3</sub> as a catalyst to sago dreg pellets can improve syngas production (H<sub>2</sub>, CO, and CH<sub>4</sub>). The most significant alteration is that the average hydrogen gas (H<sub>2</sub>) content has increased, with the greatest being in 5 % Al<sub>2</sub>O<sub>3</sub> with 31.65 %, and 10 % Al<sub>2</sub>O<sub>3</sub> with 29.94 %. Meanwhile, the CO and CH<sub>4</sub> gas content was found to be highest at 10 % Al<sub>2</sub>O<sub>3</sub>, with each experiencing an increase in average (CO 4.33 % and CH<sub>4</sub> 26.45 %) as compared to sago dregs pellets without Al<sub>2</sub>O<sub>3</sub>. Finally, sago dregs pellets with an Al<sub>2</sub>O<sub>3</sub> catalyst have a high potential as an alternative energy fuel for internal combustion engines with H<sub>2</sub>/CO of 1.65 and 1.51 respectively, for 5 % Al<sub>2</sub>O<sub>3</sub> and 10 % Al<sub>2</sub>O<sub>3</sub>, with low tar content.</div></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":\"24 \",\"pages\":\"Article 100775\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524002538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524002538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Gasification of sago dreg waste in a top-lit updraft fixed bed gasifier: Syngas composition and its effect with additional Al2O3 as catalyst
Sago-based foods have become a staple food in eastern Indonesia. Sago waste, as a by-product, has the potential to be used as a renewable energy fuel. This research aims to use sago dregs waste as an energy source by converting it into renewable energy using Top Lit Updraft (TULD) fixed bed gasification. Al2O3, a potential solid waste derived from coal fly ash, is also being investigated for use in sago dreg pellets.The two various Al2O3 contents in sago dreg pellets that will be examined with 5 % Al2O3 and 10 % Al2O3. Operational parameters employed in the gasification process involving the TULD reactor, such as gasification temperature, air flow rate, air-to-fuel ratio (AFR), and syngas assessment. According to the results, adding Al2O3 as a catalyst to sago dreg pellets can improve syngas production (H2, CO, and CH4). The most significant alteration is that the average hydrogen gas (H2) content has increased, with the greatest being in 5 % Al2O3 with 31.65 %, and 10 % Al2O3 with 29.94 %. Meanwhile, the CO and CH4 gas content was found to be highest at 10 % Al2O3, with each experiencing an increase in average (CO 4.33 % and CH4 26.45 %) as compared to sago dregs pellets without Al2O3. Finally, sago dregs pellets with an Al2O3 catalyst have a high potential as an alternative energy fuel for internal combustion engines with H2/CO of 1.65 and 1.51 respectively, for 5 % Al2O3 and 10 % Al2O3, with low tar content.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.