基于甜菜果胶和杂蛋白复合物的互穿网络水凝胶的合成与表征:结构特征与理化性质

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Lijia Li, Yue Liu, Xiangyun Tan, Fei Teng, Yang Li
{"title":"基于甜菜果胶和杂蛋白复合物的互穿网络水凝胶的合成与表征:结构特征与理化性质","authors":"Lijia Li,&nbsp;Yue Liu,&nbsp;Xiangyun Tan,&nbsp;Fei Teng,&nbsp;Yang Li","doi":"10.1016/j.carbpol.2024.122959","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogels made from natural polymers have excellent application potential due to their good biocompatibility. However, it is difficult to maximise the benefits of hydrogels when the gel network is formed by a single substance. The purpose of this study was to investigate the relationship between the interaction of modified soybean lipophilic proteins (SLP) and lysozyme (LY) and the formation of heteroprotein complexes. Subsequently, interpenetrating network (IPN) hydrogels were further synthesized on the basis of heteroprotein (HP) complexes and sugar beet pectin (SBP) as the backbone. The strong interaction between SLP and LY drove them to spontaneously form heteroprotein complexes. The HP-SBP IPN imparted good mechanical properties to the hydrogel, which could withstand a maximum pressure of 7500 pa at 88 % strain. Meanwhile, there was still 93.52 % of water being trapped in IPN after freeze-thawing. The HP-SBP IPN hydrogels could effectively protect the encapsulated substance during UV irradiation and maintain its morphology after undergoing dynamic pH changes. Furthermore, the HP-SBP IPN hydrogels could regulate their release ability through their own swelling and achieved more than 88 % release rate in simulated intestinal fluid. Therefore, this study was expected to provide a potential strategy for the synthesis of IPN hydrogels.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"349 ","pages":"Article 122959"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of interpenetrating network hydrogels based on sugar beet pectin and heteroprotein complex: Structural characteristics and physicochemical properties\",\"authors\":\"Lijia Li,&nbsp;Yue Liu,&nbsp;Xiangyun Tan,&nbsp;Fei Teng,&nbsp;Yang Li\",\"doi\":\"10.1016/j.carbpol.2024.122959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogels made from natural polymers have excellent application potential due to their good biocompatibility. However, it is difficult to maximise the benefits of hydrogels when the gel network is formed by a single substance. The purpose of this study was to investigate the relationship between the interaction of modified soybean lipophilic proteins (SLP) and lysozyme (LY) and the formation of heteroprotein complexes. Subsequently, interpenetrating network (IPN) hydrogels were further synthesized on the basis of heteroprotein (HP) complexes and sugar beet pectin (SBP) as the backbone. The strong interaction between SLP and LY drove them to spontaneously form heteroprotein complexes. The HP-SBP IPN imparted good mechanical properties to the hydrogel, which could withstand a maximum pressure of 7500 pa at 88 % strain. Meanwhile, there was still 93.52 % of water being trapped in IPN after freeze-thawing. The HP-SBP IPN hydrogels could effectively protect the encapsulated substance during UV irradiation and maintain its morphology after undergoing dynamic pH changes. Furthermore, the HP-SBP IPN hydrogels could regulate their release ability through their own swelling and achieved more than 88 % release rate in simulated intestinal fluid. Therefore, this study was expected to provide a potential strategy for the synthesis of IPN hydrogels.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"349 \",\"pages\":\"Article 122959\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861724011858\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724011858","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

天然聚合物制成的水凝胶具有良好的生物相容性,因此具有极佳的应用潜力。然而,当凝胶网络由单一物质形成时,很难最大限度地发挥水凝胶的优势。本研究旨在探讨改性大豆亲脂性蛋白(SLP)和溶菌酶(LY)的相互作用与异种蛋白复合物形成之间的关系。随后,以异性蛋白(HP)复合物为基础,甜菜果胶(SBP)为骨架,进一步合成了互穿网络(IPN)水凝胶。SLP 和 LY 之间的强相互作用促使它们自发形成异种蛋白复合物。HP-SBP IPN 为水凝胶带来了良好的机械性能,在应变为 88% 的情况下可承受 7500 pa 的最大压力。同时,冻融后仍有 93.52% 的水分滞留在 IPN 中。HP-SBP IPN 水凝胶能在紫外线照射下有效保护封装物质,并在经历动态 pH 值变化后保持其形态。此外,HP-SBP IPN 水凝胶还能通过自身溶胀调节释放能力,在模拟肠液中的释放率超过 88%。因此,这项研究有望为 IPN 水凝胶的合成提供一种潜在的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and characterization of interpenetrating network hydrogels based on sugar beet pectin and heteroprotein complex: Structural characteristics and physicochemical properties
Hydrogels made from natural polymers have excellent application potential due to their good biocompatibility. However, it is difficult to maximise the benefits of hydrogels when the gel network is formed by a single substance. The purpose of this study was to investigate the relationship between the interaction of modified soybean lipophilic proteins (SLP) and lysozyme (LY) and the formation of heteroprotein complexes. Subsequently, interpenetrating network (IPN) hydrogels were further synthesized on the basis of heteroprotein (HP) complexes and sugar beet pectin (SBP) as the backbone. The strong interaction between SLP and LY drove them to spontaneously form heteroprotein complexes. The HP-SBP IPN imparted good mechanical properties to the hydrogel, which could withstand a maximum pressure of 7500 pa at 88 % strain. Meanwhile, there was still 93.52 % of water being trapped in IPN after freeze-thawing. The HP-SBP IPN hydrogels could effectively protect the encapsulated substance during UV irradiation and maintain its morphology after undergoing dynamic pH changes. Furthermore, the HP-SBP IPN hydrogels could regulate their release ability through their own swelling and achieved more than 88 % release rate in simulated intestinal fluid. Therefore, this study was expected to provide a potential strategy for the synthesis of IPN hydrogels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信