Feiyu Xiong , Yanping Lian , Chinnapat Panwisawas , Jiawei Chen , Ming-jian Li , Anwen Liu
{"title":"定向能沉积 Ti6Al4V 固态相变的微尺度细胞自动机方法","authors":"Feiyu Xiong , Yanping Lian , Chinnapat Panwisawas , Jiawei Chen , Ming-jian Li , Anwen Liu","doi":"10.1016/j.addma.2024.104517","DOIUrl":null,"url":null,"abstract":"<div><div>Directed energy deposition is a promising additive manufacturing technology that fabricates complex geometries by fusing feed material layer-by-layer. However, the formation mechanism of the directed energy deposited Ti6Al4V solid-state phase transformation process, which is crucial for understanding the process-structure–property relationship, has remained unclear. In this study, a microscale cellular automaton method is proposed to simulate the microstructure evolution process for Ti6Al4V, specifically the <span><math><mrow><mi>β</mi><mo>→</mo><mi>α</mi><mo>/</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> phase transformation process within a few <span><math><mi>β</mi></math></span> grains. The method is further integrated with the mesoscale cellular automaton method, which predicts the prior <span><math><mi>β</mi></math></span> grain structure, the solid-state phase transformation kinetics model for the prediction of the phase volume fractions, and the finite volume method, which is used for the thermal-fluid flow modeling, providing a temperature field to the former. The integrated numerical framework not only links the thermal history with the phase volume fractions but also provides the columnar <span><math><mi>β</mi></math></span> grain structures and acicular <span><math><mrow><mi>α</mi><mo>/</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> grain structures in satisfying agreement with the available experimental observation. Moreover, the predictions shed some light on the formation mechanism of the hierarchical <span><math><mrow><mi>α</mi><mo>/</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> structure and their particular clusters. The influence of the cooling rate on the <span><math><mrow><mi>α</mi><mo>/</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> grain formation is illustrated via the three-layer case simulation. The findings on the formation mechanism of <span><math><mrow><mi>α</mi><mo>/</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> are beneficial in tailoring the microstructure of Ti6Al4V for excellent mechanical properties in directed energy deposited Ti6Al4V.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104517"},"PeriodicalIF":10.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A microscale cellular automaton method for solid-state phase transformation of directed energy deposited Ti6Al4V\",\"authors\":\"Feiyu Xiong , Yanping Lian , Chinnapat Panwisawas , Jiawei Chen , Ming-jian Li , Anwen Liu\",\"doi\":\"10.1016/j.addma.2024.104517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Directed energy deposition is a promising additive manufacturing technology that fabricates complex geometries by fusing feed material layer-by-layer. However, the formation mechanism of the directed energy deposited Ti6Al4V solid-state phase transformation process, which is crucial for understanding the process-structure–property relationship, has remained unclear. In this study, a microscale cellular automaton method is proposed to simulate the microstructure evolution process for Ti6Al4V, specifically the <span><math><mrow><mi>β</mi><mo>→</mo><mi>α</mi><mo>/</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> phase transformation process within a few <span><math><mi>β</mi></math></span> grains. The method is further integrated with the mesoscale cellular automaton method, which predicts the prior <span><math><mi>β</mi></math></span> grain structure, the solid-state phase transformation kinetics model for the prediction of the phase volume fractions, and the finite volume method, which is used for the thermal-fluid flow modeling, providing a temperature field to the former. The integrated numerical framework not only links the thermal history with the phase volume fractions but also provides the columnar <span><math><mi>β</mi></math></span> grain structures and acicular <span><math><mrow><mi>α</mi><mo>/</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> grain structures in satisfying agreement with the available experimental observation. Moreover, the predictions shed some light on the formation mechanism of the hierarchical <span><math><mrow><mi>α</mi><mo>/</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> structure and their particular clusters. The influence of the cooling rate on the <span><math><mrow><mi>α</mi><mo>/</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> grain formation is illustrated via the three-layer case simulation. The findings on the formation mechanism of <span><math><mrow><mi>α</mi><mo>/</mo><msup><mrow><mi>α</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></math></span> are beneficial in tailoring the microstructure of Ti6Al4V for excellent mechanical properties in directed energy deposited Ti6Al4V.</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":\"95 \",\"pages\":\"Article 104517\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860424005633\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424005633","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A microscale cellular automaton method for solid-state phase transformation of directed energy deposited Ti6Al4V
Directed energy deposition is a promising additive manufacturing technology that fabricates complex geometries by fusing feed material layer-by-layer. However, the formation mechanism of the directed energy deposited Ti6Al4V solid-state phase transformation process, which is crucial for understanding the process-structure–property relationship, has remained unclear. In this study, a microscale cellular automaton method is proposed to simulate the microstructure evolution process for Ti6Al4V, specifically the phase transformation process within a few grains. The method is further integrated with the mesoscale cellular automaton method, which predicts the prior grain structure, the solid-state phase transformation kinetics model for the prediction of the phase volume fractions, and the finite volume method, which is used for the thermal-fluid flow modeling, providing a temperature field to the former. The integrated numerical framework not only links the thermal history with the phase volume fractions but also provides the columnar grain structures and acicular grain structures in satisfying agreement with the available experimental observation. Moreover, the predictions shed some light on the formation mechanism of the hierarchical structure and their particular clusters. The influence of the cooling rate on the grain formation is illustrated via the three-layer case simulation. The findings on the formation mechanism of are beneficial in tailoring the microstructure of Ti6Al4V for excellent mechanical properties in directed energy deposited Ti6Al4V.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.