Zhenhuan Lv , Wenqiang Yang , Li Yao , Xiang Chen , Junyang Zhou , Ruoyu Li , Hui Mei , Laifei Cheng , Litong Zhang
{"title":"基于 BaTiO3 的超材料的电磁响应机制:微波吸收与屏蔽能力之间的转变","authors":"Zhenhuan Lv , Wenqiang Yang , Li Yao , Xiang Chen , Junyang Zhou , Ruoyu Li , Hui Mei , Laifei Cheng , Litong Zhang","doi":"10.1016/j.addma.2024.104558","DOIUrl":null,"url":null,"abstract":"<div><div>As a classical ferroelectric material, the BaTiO<sub>3</sub>-based electromagnetic metamaterials for microwave absorption/shielding have not been investigated. In this paper, triply-periodic minimal surface structures with varied unit cell dimensions (UCD) and relative densities (RD) are firstly constructed to investigate the relationship between macrostructure and electromagnetic response, and the single-step fabrication of BaTiO<sub>3</sub>-based metamaterial microwave absorber is then achieved by 3D printing technology. The optimal microwave absorption performance with a minimum reflection loss of –59.06 dB and an effective absorption bandwidth of 1.7 GHz is achieved in X-band when the UCD is 1 T (taking the UCD in the direction of microwave incidence 1 T=1.47 mm as the standard, and enlarging the UCD as a whole to 5 T in 1 T steps) and the RD is 10 %. In contrast, when the UCD is 2 T, the total shielding effectiveness of BaTiO<sub>3</sub> metamaterial is 15.98 dB, which indicates that the transition from shielding to microwave-absorbing materials can be achieved through the optimization of the macrostructure. This study shows that by tailoring structural parameters, completely different electromagnetic responses can be obtained. Macrostructural design ideas for ferroelectric metamaterials can be explored in more depth based on the above studies.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"95 ","pages":"Article 104558"},"PeriodicalIF":10.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic response mechanism of BaTiO3-based metamaterials: Transition between microwave absorption and shielding capacity\",\"authors\":\"Zhenhuan Lv , Wenqiang Yang , Li Yao , Xiang Chen , Junyang Zhou , Ruoyu Li , Hui Mei , Laifei Cheng , Litong Zhang\",\"doi\":\"10.1016/j.addma.2024.104558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As a classical ferroelectric material, the BaTiO<sub>3</sub>-based electromagnetic metamaterials for microwave absorption/shielding have not been investigated. In this paper, triply-periodic minimal surface structures with varied unit cell dimensions (UCD) and relative densities (RD) are firstly constructed to investigate the relationship between macrostructure and electromagnetic response, and the single-step fabrication of BaTiO<sub>3</sub>-based metamaterial microwave absorber is then achieved by 3D printing technology. The optimal microwave absorption performance with a minimum reflection loss of –59.06 dB and an effective absorption bandwidth of 1.7 GHz is achieved in X-band when the UCD is 1 T (taking the UCD in the direction of microwave incidence 1 T=1.47 mm as the standard, and enlarging the UCD as a whole to 5 T in 1 T steps) and the RD is 10 %. In contrast, when the UCD is 2 T, the total shielding effectiveness of BaTiO<sub>3</sub> metamaterial is 15.98 dB, which indicates that the transition from shielding to microwave-absorbing materials can be achieved through the optimization of the macrostructure. This study shows that by tailoring structural parameters, completely different electromagnetic responses can be obtained. Macrostructural design ideas for ferroelectric metamaterials can be explored in more depth based on the above studies.</div></div>\",\"PeriodicalId\":7172,\"journal\":{\"name\":\"Additive manufacturing\",\"volume\":\"95 \",\"pages\":\"Article 104558\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Additive manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214860424006043\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424006043","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Electromagnetic response mechanism of BaTiO3-based metamaterials: Transition between microwave absorption and shielding capacity
As a classical ferroelectric material, the BaTiO3-based electromagnetic metamaterials for microwave absorption/shielding have not been investigated. In this paper, triply-periodic minimal surface structures with varied unit cell dimensions (UCD) and relative densities (RD) are firstly constructed to investigate the relationship between macrostructure and electromagnetic response, and the single-step fabrication of BaTiO3-based metamaterial microwave absorber is then achieved by 3D printing technology. The optimal microwave absorption performance with a minimum reflection loss of –59.06 dB and an effective absorption bandwidth of 1.7 GHz is achieved in X-band when the UCD is 1 T (taking the UCD in the direction of microwave incidence 1 T=1.47 mm as the standard, and enlarging the UCD as a whole to 5 T in 1 T steps) and the RD is 10 %. In contrast, when the UCD is 2 T, the total shielding effectiveness of BaTiO3 metamaterial is 15.98 dB, which indicates that the transition from shielding to microwave-absorbing materials can be achieved through the optimization of the macrostructure. This study shows that by tailoring structural parameters, completely different electromagnetic responses can be obtained. Macrostructural design ideas for ferroelectric metamaterials can be explored in more depth based on the above studies.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.