Axll Ross A. Campos , Kyan Marlu B. Luza , Merrah Joy Blaya Subebe , Carlito Baltazar Tabelin , Theerayut Phengsaart , Takahiko Arima , Reya Seno , Roselyn Butalid , Art Brian Escabarte , Ahmad Reza F. Mazahery , Gloria Shiela E. Coyoca , Mylah Villacorte-Tabelin
{"title":"聚四氟乙烯(PTFE)微塑料影响鸭胚的血管生成和中枢神经系统(CNS)发育","authors":"Axll Ross A. Campos , Kyan Marlu B. Luza , Merrah Joy Blaya Subebe , Carlito Baltazar Tabelin , Theerayut Phengsaart , Takahiko Arima , Reya Seno , Roselyn Butalid , Art Brian Escabarte , Ahmad Reza F. Mazahery , Gloria Shiela E. Coyoca , Mylah Villacorte-Tabelin","doi":"10.1016/j.emcon.2024.100433","DOIUrl":null,"url":null,"abstract":"<div><div>Prolonged exposure to teratogens is known to cause neural tube defects (NTDs), a severe malformation of the central nervous system (CNS) that significantly contributes to global infant mortality. In recent years, exposure to nanoplastics (NPs) has been linked to faulty neural crest closure and altered neurulation by altering cellular adhesion molecules and accumulation of plastic particles in the neural tube leading to NTDs. However, research on the influence of various types of microplastics (MPs) on malformations of the CNS are still limited. In this study, we investigated whether MPs of polytetrafluoroethylene (PTFE)—a type of plastic commonly used as non-stick coatings of cooking utensils can affect angiogenesis and CNS development using ducks as model organisms. PTFE MPs were administered on Day 3 of duck embryo development at varying concentrations (0.01 mg/ml, 0.1 mg/ml, 1 mg/ml, and 5 mg/ml), and angiogenesis was evaluated using a chorioallantoic membrane (CAM) assay. Gross morphology and histology of the spinal column and brain were analyzed on Days 8 and 18, respectively. FTIR confirmed PTFE's structure, while SEM and DLS analyses showed particle sizes between 300 nm and 5 μm, classifying them as MPs. High concentrations (5 mg/ml) of PTFE MPs treated on duck embryos resulted in a 35 % mortality rate and reduced vascular density, suggesting anti-angiogenic effects. Brain and spinal abnormalities, such as encephalomalacia and spinal cord discontinuities were observed in the PTFE-treated embryos. Based on these results, PTFE is an anti-angiogenic and teratogenic agent affecting the development of duck embryos.</div></div>","PeriodicalId":11539,"journal":{"name":"Emerging Contaminants","volume":"11 1","pages":"Article 100433"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polytetrafluoroethylene (PTFE) microplastics affect angiogenesis and central nervous system (CNS) development of duck embryo\",\"authors\":\"Axll Ross A. Campos , Kyan Marlu B. Luza , Merrah Joy Blaya Subebe , Carlito Baltazar Tabelin , Theerayut Phengsaart , Takahiko Arima , Reya Seno , Roselyn Butalid , Art Brian Escabarte , Ahmad Reza F. Mazahery , Gloria Shiela E. Coyoca , Mylah Villacorte-Tabelin\",\"doi\":\"10.1016/j.emcon.2024.100433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Prolonged exposure to teratogens is known to cause neural tube defects (NTDs), a severe malformation of the central nervous system (CNS) that significantly contributes to global infant mortality. In recent years, exposure to nanoplastics (NPs) has been linked to faulty neural crest closure and altered neurulation by altering cellular adhesion molecules and accumulation of plastic particles in the neural tube leading to NTDs. However, research on the influence of various types of microplastics (MPs) on malformations of the CNS are still limited. In this study, we investigated whether MPs of polytetrafluoroethylene (PTFE)—a type of plastic commonly used as non-stick coatings of cooking utensils can affect angiogenesis and CNS development using ducks as model organisms. PTFE MPs were administered on Day 3 of duck embryo development at varying concentrations (0.01 mg/ml, 0.1 mg/ml, 1 mg/ml, and 5 mg/ml), and angiogenesis was evaluated using a chorioallantoic membrane (CAM) assay. Gross morphology and histology of the spinal column and brain were analyzed on Days 8 and 18, respectively. FTIR confirmed PTFE's structure, while SEM and DLS analyses showed particle sizes between 300 nm and 5 μm, classifying them as MPs. High concentrations (5 mg/ml) of PTFE MPs treated on duck embryos resulted in a 35 % mortality rate and reduced vascular density, suggesting anti-angiogenic effects. Brain and spinal abnormalities, such as encephalomalacia and spinal cord discontinuities were observed in the PTFE-treated embryos. Based on these results, PTFE is an anti-angiogenic and teratogenic agent affecting the development of duck embryos.</div></div>\",\"PeriodicalId\":11539,\"journal\":{\"name\":\"Emerging Contaminants\",\"volume\":\"11 1\",\"pages\":\"Article 100433\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Contaminants\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405665024001343\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Contaminants","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405665024001343","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Polytetrafluoroethylene (PTFE) microplastics affect angiogenesis and central nervous system (CNS) development of duck embryo
Prolonged exposure to teratogens is known to cause neural tube defects (NTDs), a severe malformation of the central nervous system (CNS) that significantly contributes to global infant mortality. In recent years, exposure to nanoplastics (NPs) has been linked to faulty neural crest closure and altered neurulation by altering cellular adhesion molecules and accumulation of plastic particles in the neural tube leading to NTDs. However, research on the influence of various types of microplastics (MPs) on malformations of the CNS are still limited. In this study, we investigated whether MPs of polytetrafluoroethylene (PTFE)—a type of plastic commonly used as non-stick coatings of cooking utensils can affect angiogenesis and CNS development using ducks as model organisms. PTFE MPs were administered on Day 3 of duck embryo development at varying concentrations (0.01 mg/ml, 0.1 mg/ml, 1 mg/ml, and 5 mg/ml), and angiogenesis was evaluated using a chorioallantoic membrane (CAM) assay. Gross morphology and histology of the spinal column and brain were analyzed on Days 8 and 18, respectively. FTIR confirmed PTFE's structure, while SEM and DLS analyses showed particle sizes between 300 nm and 5 μm, classifying them as MPs. High concentrations (5 mg/ml) of PTFE MPs treated on duck embryos resulted in a 35 % mortality rate and reduced vascular density, suggesting anti-angiogenic effects. Brain and spinal abnormalities, such as encephalomalacia and spinal cord discontinuities were observed in the PTFE-treated embryos. Based on these results, PTFE is an anti-angiogenic and teratogenic agent affecting the development of duck embryos.
期刊介绍:
Emerging Contaminants is an outlet for world-leading research addressing problems associated with environmental contamination caused by emerging contaminants and their solutions. Emerging contaminants are defined as chemicals that are not currently (or have been only recently) regulated and about which there exist concerns regarding their impact on human or ecological health. Examples of emerging contaminants include disinfection by-products, pharmaceutical and personal care products, persistent organic chemicals, and mercury etc. as well as their degradation products. We encourage papers addressing science that facilitates greater understanding of the nature, extent, and impacts of the presence of emerging contaminants in the environment; technology that exploits original principles to reduce and control their environmental presence; as well as the development, implementation and efficacy of national and international policies to protect human health and the environment from emerging contaminants.