Wei Si , Qiutai Gu , Yike Yin , Xiangyu Luo , Moxuan Xia , Xin Li , Maoning Zhong , Yongping Hu
{"title":"新型沥青路面耐磨反射冷却涂层的性能优化","authors":"Wei Si , Qiutai Gu , Yike Yin , Xiangyu Luo , Moxuan Xia , Xin Li , Maoning Zhong , Yongping Hu","doi":"10.1016/j.conbuildmat.2024.139207","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the wear resistance of traditional asphalt pavement reflective coatings and extend their cooling effect, this study employed Potassium Hexatitanate Whiskers (PHW) as a functional material to manufacture pavement reflective coatings. It was found that PHW exhibited excellent wear resistance though agglomeration resulted in adverse effects. Therefore, untreated PHW (U-PHW) underwent inorganic-organic surface modification to produce modified PHW (M-PHW). The results indicated that M-PHW exhibited excellent optical properties, with a reflectance of 78.9 %. M-PHW exhibited more uniform dispersion in the resin matrix, which significantly enhanced the coating reflectivity. Moreover, the interfacial bonding strength between M-PHW and the resin matrix was significantly improved, enhancing the wear resistance of the coating. Especially with a whisker content of 16 units, the tensile strength of the M-PHW coating reached 96.20 MPa, representing a 43.0 % increase compared to the U-PHW coating, while achieving a maximum outdoor cooling value of 5.6 °C.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"455 ","pages":"Article 139207"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance optimization of novel wear-resistant reflective cooling coatings for asphalt pavement\",\"authors\":\"Wei Si , Qiutai Gu , Yike Yin , Xiangyu Luo , Moxuan Xia , Xin Li , Maoning Zhong , Yongping Hu\",\"doi\":\"10.1016/j.conbuildmat.2024.139207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To enhance the wear resistance of traditional asphalt pavement reflective coatings and extend their cooling effect, this study employed Potassium Hexatitanate Whiskers (PHW) as a functional material to manufacture pavement reflective coatings. It was found that PHW exhibited excellent wear resistance though agglomeration resulted in adverse effects. Therefore, untreated PHW (U-PHW) underwent inorganic-organic surface modification to produce modified PHW (M-PHW). The results indicated that M-PHW exhibited excellent optical properties, with a reflectance of 78.9 %. M-PHW exhibited more uniform dispersion in the resin matrix, which significantly enhanced the coating reflectivity. Moreover, the interfacial bonding strength between M-PHW and the resin matrix was significantly improved, enhancing the wear resistance of the coating. Especially with a whisker content of 16 units, the tensile strength of the M-PHW coating reached 96.20 MPa, representing a 43.0 % increase compared to the U-PHW coating, while achieving a maximum outdoor cooling value of 5.6 °C.</div></div>\",\"PeriodicalId\":288,\"journal\":{\"name\":\"Construction and Building Materials\",\"volume\":\"455 \",\"pages\":\"Article 139207\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction and Building Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950061824043496\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824043496","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Performance optimization of novel wear-resistant reflective cooling coatings for asphalt pavement
To enhance the wear resistance of traditional asphalt pavement reflective coatings and extend their cooling effect, this study employed Potassium Hexatitanate Whiskers (PHW) as a functional material to manufacture pavement reflective coatings. It was found that PHW exhibited excellent wear resistance though agglomeration resulted in adverse effects. Therefore, untreated PHW (U-PHW) underwent inorganic-organic surface modification to produce modified PHW (M-PHW). The results indicated that M-PHW exhibited excellent optical properties, with a reflectance of 78.9 %. M-PHW exhibited more uniform dispersion in the resin matrix, which significantly enhanced the coating reflectivity. Moreover, the interfacial bonding strength between M-PHW and the resin matrix was significantly improved, enhancing the wear resistance of the coating. Especially with a whisker content of 16 units, the tensile strength of the M-PHW coating reached 96.20 MPa, representing a 43.0 % increase compared to the U-PHW coating, while achieving a maximum outdoor cooling value of 5.6 °C.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.