{"title":"基于乳清蛋白的姜黄素和没食子酸胶囊:特性、稳定性和释放动力学","authors":"Behnaz Hashemi , Mehdi Varidi , Narjes Malekjani , Seid Mahdi Jafari","doi":"10.1016/j.fufo.2024.100495","DOIUrl":null,"url":null,"abstract":"<div><div>Bigels are a class of soft matter systems with great promise for the food industry as food analogs or as enhanced ingredient substitutes. This work aimed to improve the curcumin (CUR) and gallic-acid (GA) stability, antioxidant capabilities, and controlled release by co-encapsulating them within bigels. This delivery system included a bigel made by whey protein isolate (WPI) aggregates-based oleogel and WPI-based hydrogel in equivalent amounts (50:50). The following techniques were used to evaluate how different bigels affected the chemical stability of CUR and GA: X-ray diffraction (XRD), thermogravimetric analysis (TGA), <sup>1</sup>H-nuclear magnetic resonance (<sup>1</sup>H-NMR), and Fourier infrared (FTIR) spectroscopy. As a result of the protein's ligand-binding abilities, some components may co-adsorb to oil droplet surfaces. Next, it was determined how well the bigels performed as a carrier and looked at their physicochemical stability, digestion, and performance. Examining the release rate of CUR and GA during digestion showed that bigel had a slower release rate (6–15%) than oleogel (16%) and hydrogel (34%), and CUR had a lower release (50%) due to its higher molecular weight and greater entanglement than GA (70%). The stability of bigel (against heat and light) was also higher than oleogel and hydrogel due to having a higher solid component that requires more stress to be applied to the system. CUR and GA had more antioxidant activity in bigel (96.24%) than oleogel (77.71%) and hydrogel (77.34%); which can be attributed to the formation of ultra-fine colloidal dispersions by bigel, allowing more CUR and GA to interact with free radicals by creating more contact surface. The multi-functional bigels showed great potential for delivering antioxidants to the intestine while enhancing their stability. Hydrophobic interactions and hydrogen bonding between WPI and CUR-GA were validated by FTIR analysis, that kept bigels stable. Overall, our findings demonstrated that WPI-based bigels with intriguing UV light, color, and thermal stability could be developed. This would increase the use of bigels in innovative food products with high nutritional value.</div></div>","PeriodicalId":34474,"journal":{"name":"Future Foods","volume":"10 ","pages":"Article 100495"},"PeriodicalIF":7.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whey protein-based bigels for co-encapsulation of curcumin and gallic acid: Characterization, stability and release kinetics\",\"authors\":\"Behnaz Hashemi , Mehdi Varidi , Narjes Malekjani , Seid Mahdi Jafari\",\"doi\":\"10.1016/j.fufo.2024.100495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bigels are a class of soft matter systems with great promise for the food industry as food analogs or as enhanced ingredient substitutes. This work aimed to improve the curcumin (CUR) and gallic-acid (GA) stability, antioxidant capabilities, and controlled release by co-encapsulating them within bigels. This delivery system included a bigel made by whey protein isolate (WPI) aggregates-based oleogel and WPI-based hydrogel in equivalent amounts (50:50). The following techniques were used to evaluate how different bigels affected the chemical stability of CUR and GA: X-ray diffraction (XRD), thermogravimetric analysis (TGA), <sup>1</sup>H-nuclear magnetic resonance (<sup>1</sup>H-NMR), and Fourier infrared (FTIR) spectroscopy. As a result of the protein's ligand-binding abilities, some components may co-adsorb to oil droplet surfaces. Next, it was determined how well the bigels performed as a carrier and looked at their physicochemical stability, digestion, and performance. Examining the release rate of CUR and GA during digestion showed that bigel had a slower release rate (6–15%) than oleogel (16%) and hydrogel (34%), and CUR had a lower release (50%) due to its higher molecular weight and greater entanglement than GA (70%). The stability of bigel (against heat and light) was also higher than oleogel and hydrogel due to having a higher solid component that requires more stress to be applied to the system. CUR and GA had more antioxidant activity in bigel (96.24%) than oleogel (77.71%) and hydrogel (77.34%); which can be attributed to the formation of ultra-fine colloidal dispersions by bigel, allowing more CUR and GA to interact with free radicals by creating more contact surface. The multi-functional bigels showed great potential for delivering antioxidants to the intestine while enhancing their stability. Hydrophobic interactions and hydrogen bonding between WPI and CUR-GA were validated by FTIR analysis, that kept bigels stable. Overall, our findings demonstrated that WPI-based bigels with intriguing UV light, color, and thermal stability could be developed. This would increase the use of bigels in innovative food products with high nutritional value.</div></div>\",\"PeriodicalId\":34474,\"journal\":{\"name\":\"Future Foods\",\"volume\":\"10 \",\"pages\":\"Article 100495\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Foods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666833524001990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Foods","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666833524001990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
大胶囊是一类软物质系统,作为食品类似物或增强型配料替代物,在食品工业中大有可为。这项工作旨在通过将姜黄素(CUR)和没食子酸(GA)共同包囊在大胶囊中,提高它们的稳定性、抗氧化能力和控释性。这种给药系统包括由基于乳清蛋白分离物(WPI)聚合体的油凝胶和基于 WPI 的水凝胶按等量(50:50)制成的 bigel。我们采用了以下技术来评估不同的大凝胶如何影响 CUR 和 GA 的化学稳定性:X 射线衍射 (XRD)、热重分析 (TGA)、1H-核磁共振 (1H-NMR) 和傅立叶红外光谱 (FTIR)。由于蛋白质的配体结合能力,某些成分可能会共同吸附在油滴表面。接下来,研究人员确定了 bigels 作为载体的性能,并考察了它们的理化稳定性、消化率和性能。对 CUR 和 GA 在消化过程中的释放率进行的研究表明,bigel 的释放率(6-15%)比油凝胶(16%)和水凝胶(34%)慢,CUR 的释放率(50%)比 GA 的释放率(70%)低,这是因为 CUR 的分子量较高,缠结程度较大。Bigel 的稳定性(耐热性和耐光性)也高于油凝胶和水凝胶,这是因为其固体成分较高,需要对系统施加更大的压力。CUR和GA在bigel中的抗氧化活性(96.24%)高于油凝胶(77.71%)和水凝胶(77.34%);这可能是由于bigel形成了超细胶体分散体,使更多的CUR和GA有更多的接触面与自由基相互作用。多功能 bigels 在向肠道输送抗氧化剂方面显示出巨大的潜力,同时提高了其稳定性。傅立叶变换红外光谱分析验证了 WPI 与 CUR-GA 之间的疏水相互作用和氢键作用,从而保持了 bigels 的稳定性。总之,我们的研究结果表明,基于 WPI 的 bigels 可以开发出具有令人信服的紫外线、颜色和热稳定性的产品。这将增加大胶粒在具有高营养价值的创新食品中的应用。
Whey protein-based bigels for co-encapsulation of curcumin and gallic acid: Characterization, stability and release kinetics
Bigels are a class of soft matter systems with great promise for the food industry as food analogs or as enhanced ingredient substitutes. This work aimed to improve the curcumin (CUR) and gallic-acid (GA) stability, antioxidant capabilities, and controlled release by co-encapsulating them within bigels. This delivery system included a bigel made by whey protein isolate (WPI) aggregates-based oleogel and WPI-based hydrogel in equivalent amounts (50:50). The following techniques were used to evaluate how different bigels affected the chemical stability of CUR and GA: X-ray diffraction (XRD), thermogravimetric analysis (TGA), 1H-nuclear magnetic resonance (1H-NMR), and Fourier infrared (FTIR) spectroscopy. As a result of the protein's ligand-binding abilities, some components may co-adsorb to oil droplet surfaces. Next, it was determined how well the bigels performed as a carrier and looked at their physicochemical stability, digestion, and performance. Examining the release rate of CUR and GA during digestion showed that bigel had a slower release rate (6–15%) than oleogel (16%) and hydrogel (34%), and CUR had a lower release (50%) due to its higher molecular weight and greater entanglement than GA (70%). The stability of bigel (against heat and light) was also higher than oleogel and hydrogel due to having a higher solid component that requires more stress to be applied to the system. CUR and GA had more antioxidant activity in bigel (96.24%) than oleogel (77.71%) and hydrogel (77.34%); which can be attributed to the formation of ultra-fine colloidal dispersions by bigel, allowing more CUR and GA to interact with free radicals by creating more contact surface. The multi-functional bigels showed great potential for delivering antioxidants to the intestine while enhancing their stability. Hydrophobic interactions and hydrogen bonding between WPI and CUR-GA were validated by FTIR analysis, that kept bigels stable. Overall, our findings demonstrated that WPI-based bigels with intriguing UV light, color, and thermal stability could be developed. This would increase the use of bigels in innovative food products with high nutritional value.