一类具有可变系数的片断非线性反应扩散方程的片断第二类切比雪夫函数

IF 6.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
M.H. Heydari , D. Baleanu , M. Bayramu
{"title":"一类具有可变系数的片断非线性反应扩散方程的片断第二类切比雪夫函数","authors":"M.H. Heydari ,&nbsp;D. Baleanu ,&nbsp;M. Bayramu","doi":"10.1016/j.aej.2024.10.104","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a new type of piecewise fractional derivative (PFD) is introduced. The ordinary and distributed-order fractional derivatives in the Caputo sense are used to define this type of PFD. A new version of nonlinear reaction–diffusion equations with variable coefficients is defined using this type of PFD. The orthonormal piecewise second kind Chebyshev functions (CFs), as a new family of basic functions, are generated. An explicit formula is extracted for PFD of these piecewise functions. A hybrid method based on the orthonormal piecewise second kind CFs and orthonormal second kind Chebyshev polynomials is proposed to solve the aforementioned problem. The established approach transforms solving the expressed problem into solving an algebraic system of equations. To illustrate the accuracy of the developed method, some numerical examples are considered.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"112 ","pages":"Pages 319-326"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piecewise second kind Chebyshev functions for a class of piecewise fractional nonlinear reaction–diffusion equations with variable coefficients\",\"authors\":\"M.H. Heydari ,&nbsp;D. Baleanu ,&nbsp;M. Bayramu\",\"doi\":\"10.1016/j.aej.2024.10.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a new type of piecewise fractional derivative (PFD) is introduced. The ordinary and distributed-order fractional derivatives in the Caputo sense are used to define this type of PFD. A new version of nonlinear reaction–diffusion equations with variable coefficients is defined using this type of PFD. The orthonormal piecewise second kind Chebyshev functions (CFs), as a new family of basic functions, are generated. An explicit formula is extracted for PFD of these piecewise functions. A hybrid method based on the orthonormal piecewise second kind CFs and orthonormal second kind Chebyshev polynomials is proposed to solve the aforementioned problem. The established approach transforms solving the expressed problem into solving an algebraic system of equations. To illustrate the accuracy of the developed method, some numerical examples are considered.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"112 \",\"pages\":\"Pages 319-326\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016824012717\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016824012717","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新型的片断导数(PFD)。Caputo 意义上的普通和分布阶分数导数被用来定义这种类型的 PFD。使用这种类型的 PFD 定义了具有可变系数的非线性反应扩散方程的新版本。正交片断第二类切比雪夫函数(CFs)作为新的基本函数族被生成。为这些片断函数的 PFD 提取了一个明确的公式。为解决上述问题,提出了一种基于正交片断第二类切比雪夫函数和正交第二类切比雪夫多项式的混合方法。所建立的方法将所表达问题的求解转化为代数方程系的求解。为了说明所开发方法的准确性,我们考虑了一些数值示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Piecewise second kind Chebyshev functions for a class of piecewise fractional nonlinear reaction–diffusion equations with variable coefficients
In this paper, a new type of piecewise fractional derivative (PFD) is introduced. The ordinary and distributed-order fractional derivatives in the Caputo sense are used to define this type of PFD. A new version of nonlinear reaction–diffusion equations with variable coefficients is defined using this type of PFD. The orthonormal piecewise second kind Chebyshev functions (CFs), as a new family of basic functions, are generated. An explicit formula is extracted for PFD of these piecewise functions. A hybrid method based on the orthonormal piecewise second kind CFs and orthonormal second kind Chebyshev polynomials is proposed to solve the aforementioned problem. The established approach transforms solving the expressed problem into solving an algebraic system of equations. To illustrate the accuracy of the developed method, some numerical examples are considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信