{"title":"利用时空极端梯度提升模型重建格陵兰冰盖上的 MODIS 归一化差异积雪指数产品","authors":"Fan Ye , Qing Cheng , Weifeng Hao , Dayu Yu","doi":"10.1016/j.jhydrol.2024.132277","DOIUrl":null,"url":null,"abstract":"<div><div>The spatiotemporally continuous data of normalized difference snow index (NDSI) are key to understanding the mechanisms of snow occurrence and development as well as the patterns of snow distribution changes. However, the presence of clouds, particularly prevalent in polar regions such as the Greenland Ice Sheet (GrIS), introduces a significant number of missing pixels in the MODIS NDSI daily data. To address this issue, this study proposes the utilization of a spatiotemporal extreme gradient boosting (STXGBoost) model generate a comprehensive NDSI dataset. In the proposed model, various input variables are carefully selected, encompassing terrain features, geometry-related parameters, and surface property variables. Moreover, the model incorporates spatiotemporal variation information, enhancing its capacity for reconstructing the NDSI dataset. Verification results demonstrate the efficacy of the STXGBoost model, with a coefficient of determination of 0.962, root mean square error of 0.030, mean absolute error of 0.011, and negligible bias (0.0001). Furthermore, simulation comparisons involving missing data and cross-validation with Landsat NDSI data illustrate the model’s capability to accurately reconstruct the spatial distribution of NDSI data. Notably, the proposed model surpasses the performance of traditional machine learning models, showcasing superior NDSI predictive capabilities. This study highlights the potential of leveraging auxiliary data to reconstruct NDSI in GrIS, with implications for broader applications in other regions. The findings offer valuable insights for the reconstruction of NDSI remote sensing data, contributing to the further understanding of spatiotemporal dynamics in snow-covered regions.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"645 ","pages":"Article 132277"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstructing MODIS normalized difference snow index product on Greenland ice sheet using spatiotemporal extreme gradient boosting model\",\"authors\":\"Fan Ye , Qing Cheng , Weifeng Hao , Dayu Yu\",\"doi\":\"10.1016/j.jhydrol.2024.132277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The spatiotemporally continuous data of normalized difference snow index (NDSI) are key to understanding the mechanisms of snow occurrence and development as well as the patterns of snow distribution changes. However, the presence of clouds, particularly prevalent in polar regions such as the Greenland Ice Sheet (GrIS), introduces a significant number of missing pixels in the MODIS NDSI daily data. To address this issue, this study proposes the utilization of a spatiotemporal extreme gradient boosting (STXGBoost) model generate a comprehensive NDSI dataset. In the proposed model, various input variables are carefully selected, encompassing terrain features, geometry-related parameters, and surface property variables. Moreover, the model incorporates spatiotemporal variation information, enhancing its capacity for reconstructing the NDSI dataset. Verification results demonstrate the efficacy of the STXGBoost model, with a coefficient of determination of 0.962, root mean square error of 0.030, mean absolute error of 0.011, and negligible bias (0.0001). Furthermore, simulation comparisons involving missing data and cross-validation with Landsat NDSI data illustrate the model’s capability to accurately reconstruct the spatial distribution of NDSI data. Notably, the proposed model surpasses the performance of traditional machine learning models, showcasing superior NDSI predictive capabilities. This study highlights the potential of leveraging auxiliary data to reconstruct NDSI in GrIS, with implications for broader applications in other regions. The findings offer valuable insights for the reconstruction of NDSI remote sensing data, contributing to the further understanding of spatiotemporal dynamics in snow-covered regions.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"645 \",\"pages\":\"Article 132277\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169424016731\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424016731","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Reconstructing MODIS normalized difference snow index product on Greenland ice sheet using spatiotemporal extreme gradient boosting model
The spatiotemporally continuous data of normalized difference snow index (NDSI) are key to understanding the mechanisms of snow occurrence and development as well as the patterns of snow distribution changes. However, the presence of clouds, particularly prevalent in polar regions such as the Greenland Ice Sheet (GrIS), introduces a significant number of missing pixels in the MODIS NDSI daily data. To address this issue, this study proposes the utilization of a spatiotemporal extreme gradient boosting (STXGBoost) model generate a comprehensive NDSI dataset. In the proposed model, various input variables are carefully selected, encompassing terrain features, geometry-related parameters, and surface property variables. Moreover, the model incorporates spatiotemporal variation information, enhancing its capacity for reconstructing the NDSI dataset. Verification results demonstrate the efficacy of the STXGBoost model, with a coefficient of determination of 0.962, root mean square error of 0.030, mean absolute error of 0.011, and negligible bias (0.0001). Furthermore, simulation comparisons involving missing data and cross-validation with Landsat NDSI data illustrate the model’s capability to accurately reconstruct the spatial distribution of NDSI data. Notably, the proposed model surpasses the performance of traditional machine learning models, showcasing superior NDSI predictive capabilities. This study highlights the potential of leveraging auxiliary data to reconstruct NDSI in GrIS, with implications for broader applications in other regions. The findings offer valuable insights for the reconstruction of NDSI remote sensing data, contributing to the further understanding of spatiotemporal dynamics in snow-covered regions.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.