基于电沉积的松散压实砂结构自修复技术

IF 3.3 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Ibuki Nishimura, Hitoshi Matsubara
{"title":"基于电沉积的松散压实砂结构自修复技术","authors":"Ibuki Nishimura,&nbsp;Hitoshi Matsubara","doi":"10.1016/j.sandf.2024.101535","DOIUrl":null,"url":null,"abstract":"<div><div>The natural erosion of sand along coastlines and in landfills is a complex phenomenon influenced by interactions among currents, waves, tides, and wind. Countermeasures against internal erosion in landfills often involve installing geotextile sheets and/or filters between seawalls and landfills. However, the mere installation of such structures proves insufficient for comprehensively monitoring and mitigating soil erosion, and ensuring adequate ground stability and safety is challenging. This study focuses on the application of electrodeposition for mitigating soil erosion and potentially repairing these structures. By applying a weak electric current to severely deteriorated objects, carbonate minerals, called electrodeposits, are deposited on the cathode side and can repair vulnerable areas through self-organized solidification. Experiments were conducted using various silica sand specimens to assess the applicability of electrodeposition to discrete sand. The results revealed that, in specimens with relatively large sand particles, such as those in silica sand No. 3, the sand adhered to the cathode, forming a solidified area approximately 15–17 mm high. A microstructural analysis indicated the presence of crystallized minerals resembling calcium carbonate bonding within the interstitial spaces between the sand particles. These experimental findings suggest that electrodeposition can be applied to enhance the stability and safety of sandy soil-based structures.</div></div>","PeriodicalId":21857,"journal":{"name":"Soils and Foundations","volume":"64 6","pages":"Article 101535"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrodeposition-based self-healing technique for structures with loosely compacted sand\",\"authors\":\"Ibuki Nishimura,&nbsp;Hitoshi Matsubara\",\"doi\":\"10.1016/j.sandf.2024.101535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The natural erosion of sand along coastlines and in landfills is a complex phenomenon influenced by interactions among currents, waves, tides, and wind. Countermeasures against internal erosion in landfills often involve installing geotextile sheets and/or filters between seawalls and landfills. However, the mere installation of such structures proves insufficient for comprehensively monitoring and mitigating soil erosion, and ensuring adequate ground stability and safety is challenging. This study focuses on the application of electrodeposition for mitigating soil erosion and potentially repairing these structures. By applying a weak electric current to severely deteriorated objects, carbonate minerals, called electrodeposits, are deposited on the cathode side and can repair vulnerable areas through self-organized solidification. Experiments were conducted using various silica sand specimens to assess the applicability of electrodeposition to discrete sand. The results revealed that, in specimens with relatively large sand particles, such as those in silica sand No. 3, the sand adhered to the cathode, forming a solidified area approximately 15–17 mm high. A microstructural analysis indicated the presence of crystallized minerals resembling calcium carbonate bonding within the interstitial spaces between the sand particles. These experimental findings suggest that electrodeposition can be applied to enhance the stability and safety of sandy soil-based structures.</div></div>\",\"PeriodicalId\":21857,\"journal\":{\"name\":\"Soils and Foundations\",\"volume\":\"64 6\",\"pages\":\"Article 101535\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Foundations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038080624001136\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Foundations","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038080624001136","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

海岸线和垃圾填埋场中沙子的自然侵蚀是受海流、海浪、潮汐和风等相互作用影响的一种复杂现象。防止垃圾填埋场内部侵蚀的对策通常是在海堤和垃圾填埋场之间安装土工织物板和/或过滤器。然而,事实证明,仅仅安装这些结构并不足以全面监测和减轻土壤侵蚀,而且确保足够的地面稳定性和安全性也具有挑战性。本研究的重点是应用电沉积技术来减轻土壤侵蚀并修复这些结构。通过对严重老化的物体施加微弱的电流,碳酸盐矿物(称为电沉积物)会沉积在阴极一侧,并通过自组织凝固修复脆弱区域。我们使用各种硅砂试样进行了实验,以评估电沉积对离散砂的适用性。结果显示,在砂粒相对较大的试样中,如 3 号硅砂中的砂粒,砂粒附着在阴极上,形成一个高约 15-17 毫米的凝固区域。微观结构分析表明,在砂粒之间的间隙中存在类似碳酸钙结合的结晶矿物。这些实验结果表明,电沉积可用于提高沙土结构的稳定性和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrodeposition-based self-healing technique for structures with loosely compacted sand
The natural erosion of sand along coastlines and in landfills is a complex phenomenon influenced by interactions among currents, waves, tides, and wind. Countermeasures against internal erosion in landfills often involve installing geotextile sheets and/or filters between seawalls and landfills. However, the mere installation of such structures proves insufficient for comprehensively monitoring and mitigating soil erosion, and ensuring adequate ground stability and safety is challenging. This study focuses on the application of electrodeposition for mitigating soil erosion and potentially repairing these structures. By applying a weak electric current to severely deteriorated objects, carbonate minerals, called electrodeposits, are deposited on the cathode side and can repair vulnerable areas through self-organized solidification. Experiments were conducted using various silica sand specimens to assess the applicability of electrodeposition to discrete sand. The results revealed that, in specimens with relatively large sand particles, such as those in silica sand No. 3, the sand adhered to the cathode, forming a solidified area approximately 15–17 mm high. A microstructural analysis indicated the presence of crystallized minerals resembling calcium carbonate bonding within the interstitial spaces between the sand particles. These experimental findings suggest that electrodeposition can be applied to enhance the stability and safety of sandy soil-based structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soils and Foundations
Soils and Foundations 工程技术-地球科学综合
CiteScore
6.40
自引率
8.10%
发文量
99
审稿时长
5 months
期刊介绍: Soils and Foundations is one of the leading journals in the field of soil mechanics and geotechnical engineering. It is the official journal of the Japanese Geotechnical Society (JGS)., The journal publishes a variety of original research paper, technical reports, technical notes, as well as the state-of-the-art reports upon invitation by the Editor, in the fields of soil and rock mechanics, geotechnical engineering, and environmental geotechnics. Since the publication of Volume 1, No.1 issue in June 1960, Soils and Foundations will celebrate the 60th anniversary in the year of 2020. Soils and Foundations welcomes theoretical as well as practical work associated with the aforementioned field(s). Case studies that describe the original and interdisciplinary work applicable to geotechnical engineering are particularly encouraged. Discussions to each of the published articles are also welcomed in order to provide an avenue in which opinions of peers may be fed back or exchanged. In providing latest expertise on a specific topic, one issue out of six per year on average was allocated to include selected papers from the International Symposia which were held in Japan as well as overseas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信