{"title":"聚二甲基硅氧烷短碳纤维复合材料中的 I 型裂纹扩展","authors":"Nan Hou , Qiang Guo , Fahmi Zaïri , Ning Ding","doi":"10.1016/j.compstruct.2024.118682","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a comprehensive analysis of reinforcement toughening and failure mechanisms in polydimethylsiloxane (PDMS)-carbon fiber (CF) composites employing an approach combining experiments and numerical simulations. Through a series of meticulously designed mechanical experiments, the behavior of the composite material under varying conditions is thoroughly examined. The introduction of CFs enhances the stiffness of the material while also leading to debonding and an increased Mullins effect. A constitutive model replicating the observed reinforcement and damage behavior is implemented. Our investigation extends to the analysis of crack growth through both numerical simulations and microscopic morphological examinations. A cohesive zone model is subsequently utilized to simulate crack propagation, providing enhanced understanding of the relationship between structural characteristics and mechanical behaviors. The process of crack propagation subjects the materials to cycles of loading and unloading, highlighted by the reinforcing action of CF pinning and stress transfer, alongside toughening mechanisms attributed to a variety of dissipative processes: interfacial debonding damage, energy loss due to CF pull-out, the Mullins effect, and viscous energy dissipation. This study elucidates the complex mechanical interplay within PDMS-CF composites and suggests pathways for their design optimization, significantly broadening their applicability in numerous domains.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118682"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mode I crack propagation in polydimethylsiloxane-short carbon fiber composites\",\"authors\":\"Nan Hou , Qiang Guo , Fahmi Zaïri , Ning Ding\",\"doi\":\"10.1016/j.compstruct.2024.118682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a comprehensive analysis of reinforcement toughening and failure mechanisms in polydimethylsiloxane (PDMS)-carbon fiber (CF) composites employing an approach combining experiments and numerical simulations. Through a series of meticulously designed mechanical experiments, the behavior of the composite material under varying conditions is thoroughly examined. The introduction of CFs enhances the stiffness of the material while also leading to debonding and an increased Mullins effect. A constitutive model replicating the observed reinforcement and damage behavior is implemented. Our investigation extends to the analysis of crack growth through both numerical simulations and microscopic morphological examinations. A cohesive zone model is subsequently utilized to simulate crack propagation, providing enhanced understanding of the relationship between structural characteristics and mechanical behaviors. The process of crack propagation subjects the materials to cycles of loading and unloading, highlighted by the reinforcing action of CF pinning and stress transfer, alongside toughening mechanisms attributed to a variety of dissipative processes: interfacial debonding damage, energy loss due to CF pull-out, the Mullins effect, and viscous energy dissipation. This study elucidates the complex mechanical interplay within PDMS-CF composites and suggests pathways for their design optimization, significantly broadening their applicability in numerous domains.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"352 \",\"pages\":\"Article 118682\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324008109\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324008109","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Mode I crack propagation in polydimethylsiloxane-short carbon fiber composites
This paper presents a comprehensive analysis of reinforcement toughening and failure mechanisms in polydimethylsiloxane (PDMS)-carbon fiber (CF) composites employing an approach combining experiments and numerical simulations. Through a series of meticulously designed mechanical experiments, the behavior of the composite material under varying conditions is thoroughly examined. The introduction of CFs enhances the stiffness of the material while also leading to debonding and an increased Mullins effect. A constitutive model replicating the observed reinforcement and damage behavior is implemented. Our investigation extends to the analysis of crack growth through both numerical simulations and microscopic morphological examinations. A cohesive zone model is subsequently utilized to simulate crack propagation, providing enhanced understanding of the relationship between structural characteristics and mechanical behaviors. The process of crack propagation subjects the materials to cycles of loading and unloading, highlighted by the reinforcing action of CF pinning and stress transfer, alongside toughening mechanisms attributed to a variety of dissipative processes: interfacial debonding damage, energy loss due to CF pull-out, the Mullins effect, and viscous energy dissipation. This study elucidates the complex mechanical interplay within PDMS-CF composites and suggests pathways for their design optimization, significantly broadening their applicability in numerous domains.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.