{"title":"冲击能和二氧化硅浓度对剪切增稠液处理织物的动态冲击和准静态抗穿刺性能的作用","authors":"Abdulhalim Aşkan , Murat Aydın","doi":"10.1016/j.compstruct.2024.118689","DOIUrl":null,"url":null,"abstract":"<div><div>The primary objective of this study is to reveal the role of shear-thickening fluids on the low-speed impact behavior and quasi-static puncture resistance conditions of impregnated p-aramid fabric. This was achieved by progressively increasing the silica ratio methodically. Rheological experiments indicated that 60% represents a crucial threshold for silica content, over which the rheological performance of fluids markedly improves. The impregnated targets exhibited a substantial increase in both dynamic impact and quasi-static puncture resistance in comparison to the neat fabric. Results from tests using the same amount of impact energy showed that impregnated targets had much better impact resistance (ranging from 30.5% to 119.2%) and better energy absorption (ranging from 22.9% to 61.3%) than the untreated targets. In quasi-static tests, impregnated targets exhibited significantly higher puncture resistance, ranging from 42.3% to 90.46%, compared to the neat fabric. The enhanced performance of impregnated targets was ascribed to the presence of interfiber friction, the thickening mechanism of the fluid, and the hardness of the particles. Compared to the neat fabric, the performance enhancement achieved in dynamic impact tests is greater than that observed in quasistatic tests. The variation in performance was associated with the contact area of the threat with the target. Due to the intense force exerted by the knife tip, its contact area with the target is smaller in comparison to that of the impactor. This caused the particle hardness and thickening mechanism to play a lesser role in quasi-static tests compared to impact tests. In addition, to reveal the effect of impact energy, tests were carried out at three different impact energy levels: 20J, 40J, and 60J. The impact resistance of both neat and impregnated textiles improved as the impact energy went up. Nevertheless, the neat fabric exhibited a greater augmentation in resistance in contrast to the impregnated one.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118689"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of impact energy and silica concentration on dynamic impact and quasi-static puncture resistance of fabrics treated with shear-thickening fluids\",\"authors\":\"Abdulhalim Aşkan , Murat Aydın\",\"doi\":\"10.1016/j.compstruct.2024.118689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The primary objective of this study is to reveal the role of shear-thickening fluids on the low-speed impact behavior and quasi-static puncture resistance conditions of impregnated p-aramid fabric. This was achieved by progressively increasing the silica ratio methodically. Rheological experiments indicated that 60% represents a crucial threshold for silica content, over which the rheological performance of fluids markedly improves. The impregnated targets exhibited a substantial increase in both dynamic impact and quasi-static puncture resistance in comparison to the neat fabric. Results from tests using the same amount of impact energy showed that impregnated targets had much better impact resistance (ranging from 30.5% to 119.2%) and better energy absorption (ranging from 22.9% to 61.3%) than the untreated targets. In quasi-static tests, impregnated targets exhibited significantly higher puncture resistance, ranging from 42.3% to 90.46%, compared to the neat fabric. The enhanced performance of impregnated targets was ascribed to the presence of interfiber friction, the thickening mechanism of the fluid, and the hardness of the particles. Compared to the neat fabric, the performance enhancement achieved in dynamic impact tests is greater than that observed in quasistatic tests. The variation in performance was associated with the contact area of the threat with the target. Due to the intense force exerted by the knife tip, its contact area with the target is smaller in comparison to that of the impactor. This caused the particle hardness and thickening mechanism to play a lesser role in quasi-static tests compared to impact tests. In addition, to reveal the effect of impact energy, tests were carried out at three different impact energy levels: 20J, 40J, and 60J. The impact resistance of both neat and impregnated textiles improved as the impact energy went up. Nevertheless, the neat fabric exhibited a greater augmentation in resistance in contrast to the impregnated one.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"352 \",\"pages\":\"Article 118689\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324008171\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324008171","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
The role of impact energy and silica concentration on dynamic impact and quasi-static puncture resistance of fabrics treated with shear-thickening fluids
The primary objective of this study is to reveal the role of shear-thickening fluids on the low-speed impact behavior and quasi-static puncture resistance conditions of impregnated p-aramid fabric. This was achieved by progressively increasing the silica ratio methodically. Rheological experiments indicated that 60% represents a crucial threshold for silica content, over which the rheological performance of fluids markedly improves. The impregnated targets exhibited a substantial increase in both dynamic impact and quasi-static puncture resistance in comparison to the neat fabric. Results from tests using the same amount of impact energy showed that impregnated targets had much better impact resistance (ranging from 30.5% to 119.2%) and better energy absorption (ranging from 22.9% to 61.3%) than the untreated targets. In quasi-static tests, impregnated targets exhibited significantly higher puncture resistance, ranging from 42.3% to 90.46%, compared to the neat fabric. The enhanced performance of impregnated targets was ascribed to the presence of interfiber friction, the thickening mechanism of the fluid, and the hardness of the particles. Compared to the neat fabric, the performance enhancement achieved in dynamic impact tests is greater than that observed in quasistatic tests. The variation in performance was associated with the contact area of the threat with the target. Due to the intense force exerted by the knife tip, its contact area with the target is smaller in comparison to that of the impactor. This caused the particle hardness and thickening mechanism to play a lesser role in quasi-static tests compared to impact tests. In addition, to reveal the effect of impact energy, tests were carried out at three different impact energy levels: 20J, 40J, and 60J. The impact resistance of both neat and impregnated textiles improved as the impact energy went up. Nevertheless, the neat fabric exhibited a greater augmentation in resistance in contrast to the impregnated one.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.