Tao Xue, Wei Zhong Jiang, Yi Zhang, Nian Ci Du, Jun Wen Shi, Yi Chao Qu, Xin Ren
{"title":"旋转三角形辅助穿孔板:结构设计和特性分析","authors":"Tao Xue, Wei Zhong Jiang, Yi Zhang, Nian Ci Du, Jun Wen Shi, Yi Chao Qu, Xin Ren","doi":"10.1016/j.compstruct.2024.118684","DOIUrl":null,"url":null,"abstract":"<div><div>Auxetic metamaterials have garnered extensive attention over the past few decades due to their exceptional and superior mechanical properties. However, owing to their unique porous structure, it is challenging to ensure that structures possess strong energy absorption capabilities while exhibiting excellent auxetic characteristics. This study introduces a rotating triangular auxetic metamaterial (RTAM) by perforating traditional rigid rotating triangles. Quasi-static compression tests and numerical simulations are conducted on the new structure to investigate the effects of wall thickness and re-entrant angle of the triangular perforated plate on mechanical properties and Poisson’s ratio. The plateau stress and specific energy absorption (SEA) of RTAM are 4 and 10 times higher than that of traditional trichiral auxetic metamaterials (TCAM), respectively. With an increase in wall thickness, both plateau stress and SEA of the structure are improved significantly. As the re-entrant angle increases, the SEA of the structure initially decreases and then increases. RTAM achieves both lightweight structure and ideal mechanical performance, providing an approach for manufacturing lightweight and high-strength auxetic metamaterials, with significant potential applications in the field of energy absorption.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"352 ","pages":"Article 118684"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rotating triangular auxetic perforated plate: Structural design and characteristic analysis\",\"authors\":\"Tao Xue, Wei Zhong Jiang, Yi Zhang, Nian Ci Du, Jun Wen Shi, Yi Chao Qu, Xin Ren\",\"doi\":\"10.1016/j.compstruct.2024.118684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Auxetic metamaterials have garnered extensive attention over the past few decades due to their exceptional and superior mechanical properties. However, owing to their unique porous structure, it is challenging to ensure that structures possess strong energy absorption capabilities while exhibiting excellent auxetic characteristics. This study introduces a rotating triangular auxetic metamaterial (RTAM) by perforating traditional rigid rotating triangles. Quasi-static compression tests and numerical simulations are conducted on the new structure to investigate the effects of wall thickness and re-entrant angle of the triangular perforated plate on mechanical properties and Poisson’s ratio. The plateau stress and specific energy absorption (SEA) of RTAM are 4 and 10 times higher than that of traditional trichiral auxetic metamaterials (TCAM), respectively. With an increase in wall thickness, both plateau stress and SEA of the structure are improved significantly. As the re-entrant angle increases, the SEA of the structure initially decreases and then increases. RTAM achieves both lightweight structure and ideal mechanical performance, providing an approach for manufacturing lightweight and high-strength auxetic metamaterials, with significant potential applications in the field of energy absorption.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"352 \",\"pages\":\"Article 118684\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324008122\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324008122","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
A rotating triangular auxetic perforated plate: Structural design and characteristic analysis
Auxetic metamaterials have garnered extensive attention over the past few decades due to their exceptional and superior mechanical properties. However, owing to their unique porous structure, it is challenging to ensure that structures possess strong energy absorption capabilities while exhibiting excellent auxetic characteristics. This study introduces a rotating triangular auxetic metamaterial (RTAM) by perforating traditional rigid rotating triangles. Quasi-static compression tests and numerical simulations are conducted on the new structure to investigate the effects of wall thickness and re-entrant angle of the triangular perforated plate on mechanical properties and Poisson’s ratio. The plateau stress and specific energy absorption (SEA) of RTAM are 4 and 10 times higher than that of traditional trichiral auxetic metamaterials (TCAM), respectively. With an increase in wall thickness, both plateau stress and SEA of the structure are improved significantly. As the re-entrant angle increases, the SEA of the structure initially decreases and then increases. RTAM achieves both lightweight structure and ideal mechanical performance, providing an approach for manufacturing lightweight and high-strength auxetic metamaterials, with significant potential applications in the field of energy absorption.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.