Dina Ragab , Kendra E. Kaiser , Qifei Niu , Mohamed Attwa , Alejandro N. Flores
{"title":"在美国爱达荷州金银谷一个密集管理的水资源系统中使用增益/损耗法和电阻率层析成像法对运河渗流进行量化的案例研究","authors":"Dina Ragab , Kendra E. Kaiser , Qifei Niu , Mohamed Attwa , Alejandro N. Flores","doi":"10.1016/j.jhydrol.2024.132251","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring groundwater-surface water (GW-SW) interactions is essential for effectively managing the available water resources in semi-arid and arid environments. The focus of this study was to quantify how much SW is being exchanged with the shallow GW aquifer in the Treasure Valley (TV), Idaho, USA. Previous water budgets estimated regional canal seepage without incorporating canal variability and flow measurement uncertainty. To address this, we applied both direct (gain/loss) and indirect (electrical resistivity tomography (ERT)) techniques. Direct seepage measurements were taken on canals capturing a range of different characteristics in the TV. The discrete measurements were then used to estimate the total seepage anticipated to be lost from these canals during the irrigation season. Our findings showed high seepage variability across the canals. The ERT inversion approach was utilized before and after the irrigation season by applying an advanced inversion scheme to better constrain the canal seepage spatial variability and uncertainty by quantifying changes in the saturated zone with 2D-ERT results. Temporal changes in the subsurface resistivity were observed due to the lateral flow from the nearby surface canal during the irrigation season. The combination of these approaches improves our understanding of SW-GW interactions in intensively managed irrigation systems.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"645 ","pages":"Article 132251"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A case study of canal seepage quantification using gain/loss method and electrical resistivity tomography in an intensively managed water resource system in the Treasure Valley, Idaho, United States\",\"authors\":\"Dina Ragab , Kendra E. Kaiser , Qifei Niu , Mohamed Attwa , Alejandro N. Flores\",\"doi\":\"10.1016/j.jhydrol.2024.132251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monitoring groundwater-surface water (GW-SW) interactions is essential for effectively managing the available water resources in semi-arid and arid environments. The focus of this study was to quantify how much SW is being exchanged with the shallow GW aquifer in the Treasure Valley (TV), Idaho, USA. Previous water budgets estimated regional canal seepage without incorporating canal variability and flow measurement uncertainty. To address this, we applied both direct (gain/loss) and indirect (electrical resistivity tomography (ERT)) techniques. Direct seepage measurements were taken on canals capturing a range of different characteristics in the TV. The discrete measurements were then used to estimate the total seepage anticipated to be lost from these canals during the irrigation season. Our findings showed high seepage variability across the canals. The ERT inversion approach was utilized before and after the irrigation season by applying an advanced inversion scheme to better constrain the canal seepage spatial variability and uncertainty by quantifying changes in the saturated zone with 2D-ERT results. Temporal changes in the subsurface resistivity were observed due to the lateral flow from the nearby surface canal during the irrigation season. The combination of these approaches improves our understanding of SW-GW interactions in intensively managed irrigation systems.</div></div>\",\"PeriodicalId\":362,\"journal\":{\"name\":\"Journal of Hydrology\",\"volume\":\"645 \",\"pages\":\"Article 132251\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022169424016470\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424016470","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A case study of canal seepage quantification using gain/loss method and electrical resistivity tomography in an intensively managed water resource system in the Treasure Valley, Idaho, United States
Monitoring groundwater-surface water (GW-SW) interactions is essential for effectively managing the available water resources in semi-arid and arid environments. The focus of this study was to quantify how much SW is being exchanged with the shallow GW aquifer in the Treasure Valley (TV), Idaho, USA. Previous water budgets estimated regional canal seepage without incorporating canal variability and flow measurement uncertainty. To address this, we applied both direct (gain/loss) and indirect (electrical resistivity tomography (ERT)) techniques. Direct seepage measurements were taken on canals capturing a range of different characteristics in the TV. The discrete measurements were then used to estimate the total seepage anticipated to be lost from these canals during the irrigation season. Our findings showed high seepage variability across the canals. The ERT inversion approach was utilized before and after the irrigation season by applying an advanced inversion scheme to better constrain the canal seepage spatial variability and uncertainty by quantifying changes in the saturated zone with 2D-ERT results. Temporal changes in the subsurface resistivity were observed due to the lateral flow from the nearby surface canal during the irrigation season. The combination of these approaches improves our understanding of SW-GW interactions in intensively managed irrigation systems.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.