通过异质结构策略实现 ODS-FeCrAl 合金的强度-电导率协同效应

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dingbo Sun, Zheng Lu, Xiaolong Li, Shang Gao, Hui Li
{"title":"通过异质结构策略实现 ODS-FeCrAl 合金的强度-电导率协同效应","authors":"Dingbo Sun,&nbsp;Zheng Lu,&nbsp;Xiaolong Li,&nbsp;Shang Gao,&nbsp;Hui Li","doi":"10.1016/j.msea.2024.147536","DOIUrl":null,"url":null,"abstract":"<div><div>Oxide dispersion strengthened (ODS)-FeCrAl alloys are candidate structural materials for advanced nuclear reactor applications, which have excellent strength and radiation tolerance but low ductility. In this study, a novel ODS-FeCrAl heterostructured composite, reinforced with FCC-structured ODS-CoCrFeNiMn high-entropy particles, was prepared by using mechanical alloying and spark plasma sintering to achieve the strength-ductility synergy. The effect of different reinforcement contents (0, 10, 15 and 20 wt%, designated as RC-0, RC-10, RC-15, and RC-20, respectively) on the microstructure and mechanical properties of the composites was investigated. The results showed that the unreinforced reference alloy, RC-0, consists of BCC-structured ODS-FeCrAl matrix and high-density oxides. In the RC-10, RC-15, and RC-20 composites, in addition to the ODS-FeCrAl matrix and nanoscale oxides, FCC-structured ODS-CoCrFeNiMn high-entropy reinforcement with ultrafine grain size and FCC transition layer with gradient grain size are observed. As the reinforcement content increases, the thickness of transition region increases. The composites show an increase in ultimate compressive strength and compressive strain with increasing reinforcement content in the following order: 2951 MPa/33.6 %, 3169 MPa/40.0 %, 3290 MPa/43.2 %, and 3489 MPa/48.8 %. And the compressive yield strength exhibits an initial increase and subsequent decrease, i.e. 1523 MPa (RC-0), 1680 MPa (RC-10), 1635 MPa (RC-15), and 1355 MPa (RC-20), respectively. The increase in yield strength is mainly attributed to hetero-deformation induced (HDI) strengthening and reinforcement hardening. The improvement in ductility is mainly attributed to the HDI work hardening and the suppression of microcrack formation and propagation at prior powder boundaries.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"920 ","pages":"Article 147536"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving strength-ductility synergy of ODS-FeCrAl alloys via heterostructured strategy\",\"authors\":\"Dingbo Sun,&nbsp;Zheng Lu,&nbsp;Xiaolong Li,&nbsp;Shang Gao,&nbsp;Hui Li\",\"doi\":\"10.1016/j.msea.2024.147536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Oxide dispersion strengthened (ODS)-FeCrAl alloys are candidate structural materials for advanced nuclear reactor applications, which have excellent strength and radiation tolerance but low ductility. In this study, a novel ODS-FeCrAl heterostructured composite, reinforced with FCC-structured ODS-CoCrFeNiMn high-entropy particles, was prepared by using mechanical alloying and spark plasma sintering to achieve the strength-ductility synergy. The effect of different reinforcement contents (0, 10, 15 and 20 wt%, designated as RC-0, RC-10, RC-15, and RC-20, respectively) on the microstructure and mechanical properties of the composites was investigated. The results showed that the unreinforced reference alloy, RC-0, consists of BCC-structured ODS-FeCrAl matrix and high-density oxides. In the RC-10, RC-15, and RC-20 composites, in addition to the ODS-FeCrAl matrix and nanoscale oxides, FCC-structured ODS-CoCrFeNiMn high-entropy reinforcement with ultrafine grain size and FCC transition layer with gradient grain size are observed. As the reinforcement content increases, the thickness of transition region increases. The composites show an increase in ultimate compressive strength and compressive strain with increasing reinforcement content in the following order: 2951 MPa/33.6 %, 3169 MPa/40.0 %, 3290 MPa/43.2 %, and 3489 MPa/48.8 %. And the compressive yield strength exhibits an initial increase and subsequent decrease, i.e. 1523 MPa (RC-0), 1680 MPa (RC-10), 1635 MPa (RC-15), and 1355 MPa (RC-20), respectively. The increase in yield strength is mainly attributed to hetero-deformation induced (HDI) strengthening and reinforcement hardening. The improvement in ductility is mainly attributed to the HDI work hardening and the suppression of microcrack formation and propagation at prior powder boundaries.</div></div>\",\"PeriodicalId\":385,\"journal\":{\"name\":\"Materials Science and Engineering: A\",\"volume\":\"920 \",\"pages\":\"Article 147536\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921509324014679\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509324014679","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氧化物弥散强化(ODS)-铁铬铝合金是先进核反应堆应用的候选结构材料,具有优异的强度和辐射耐受性,但延展性较低。本研究采用机械合金化和火花等离子烧结技术制备了一种新型 ODS-FeCrAl 异质结构复合材料,并用 FCC 结构的 ODS-CoCrFeNiMn 高熵颗粒进行了增强,以实现强度-韧性的协同作用。研究了不同增强含量(0、10、15 和 20 wt%,分别称为 RC-0、RC-10、RC-15 和 RC-20)对复合材料微观结构和力学性能的影响。结果表明,未增强的参考合金 RC-0 由 BCC 结构的 ODS-FeCrAl 基体和高密度氧化物组成。在 RC-10、RC-15 和 RC-20 复合材料中,除了 ODS-FeCrAl 基体和纳米级氧化物外,还观察到具有超细晶粒尺寸的 FCC 结构 ODS-CoCrFeNiMn 高熵增强层和具有梯度晶粒尺寸的 FCC 过渡层。随着增强层含量的增加,过渡区的厚度也随之增加。复合材料的极限抗压强度和抗压应变随着增强层含量的增加依次增加:2951 兆帕/33.6%、3169 兆帕/40.0%、3290 兆帕/43.2% 和 3489 兆帕/48.8%。而抗压屈服强度则呈现出先上升后下降的趋势,即分别为 1523 兆帕(RC-0)、1680 兆帕(RC-10)、1635 兆帕(RC-15)和 1355 兆帕(RC-20)。屈服强度的提高主要归因于异变形诱导(HDI)强化和钢筋硬化。延展性的提高主要归因于 HDI 加工硬化和抑制了粉末边界处微裂纹的形成和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achieving strength-ductility synergy of ODS-FeCrAl alloys via heterostructured strategy
Oxide dispersion strengthened (ODS)-FeCrAl alloys are candidate structural materials for advanced nuclear reactor applications, which have excellent strength and radiation tolerance but low ductility. In this study, a novel ODS-FeCrAl heterostructured composite, reinforced with FCC-structured ODS-CoCrFeNiMn high-entropy particles, was prepared by using mechanical alloying and spark plasma sintering to achieve the strength-ductility synergy. The effect of different reinforcement contents (0, 10, 15 and 20 wt%, designated as RC-0, RC-10, RC-15, and RC-20, respectively) on the microstructure and mechanical properties of the composites was investigated. The results showed that the unreinforced reference alloy, RC-0, consists of BCC-structured ODS-FeCrAl matrix and high-density oxides. In the RC-10, RC-15, and RC-20 composites, in addition to the ODS-FeCrAl matrix and nanoscale oxides, FCC-structured ODS-CoCrFeNiMn high-entropy reinforcement with ultrafine grain size and FCC transition layer with gradient grain size are observed. As the reinforcement content increases, the thickness of transition region increases. The composites show an increase in ultimate compressive strength and compressive strain with increasing reinforcement content in the following order: 2951 MPa/33.6 %, 3169 MPa/40.0 %, 3290 MPa/43.2 %, and 3489 MPa/48.8 %. And the compressive yield strength exhibits an initial increase and subsequent decrease, i.e. 1523 MPa (RC-0), 1680 MPa (RC-10), 1635 MPa (RC-15), and 1355 MPa (RC-20), respectively. The increase in yield strength is mainly attributed to hetero-deformation induced (HDI) strengthening and reinforcement hardening. The improvement in ductility is mainly attributed to the HDI work hardening and the suppression of microcrack formation and propagation at prior powder boundaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信