利用飞秒激光制造高质量图案金刚石的研究

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Junjie Zou , Qijun Wang , Wei Shen , Sheng Peng , Zijun Qi , Gai Wu , Qiang Cao , Sheng Liu
{"title":"利用飞秒激光制造高质量图案金刚石的研究","authors":"Junjie Zou ,&nbsp;Qijun Wang ,&nbsp;Wei Shen ,&nbsp;Sheng Peng ,&nbsp;Zijun Qi ,&nbsp;Gai Wu ,&nbsp;Qiang Cao ,&nbsp;Sheng Liu","doi":"10.1016/j.diamond.2024.111755","DOIUrl":null,"url":null,"abstract":"<div><div>Diamond, known for its exceptional thermal, electrical, and mechanical properties, is widely used in precision machining tools, MEMS, and electronic devices. However, because of its extreme hardness and chemical inertness, diamond machining is highly challenging. Femtosecond laser technology, with its high instantaneous energy and minimal heat-affected zone, has emerged as an effective method for the precision machining of diamond. This study explores the application of 1026 nm and 513 nm femtosecond lasers in diamond grooving. The experimental results indicate that with increasing laser energy density, both groove width and depth increase, accompanied by a rise in amorphous carbon and graphite contents, resulting in increased tensile stress and decreased crystallinity in the machined region. Notably, the 513 nm laser demonstrates higher precision, achieving narrower grooves suitable for fine machining of diamond. Molecular dynamics simulations and experimental data reveal that the formation of amorphous carbon and graphite phases is the primary mechanism for deep ablation, and no significant anisotropy is observed during the process, allowing for the uniform fabrication of micro-nanostructures. TEM analysis confirms the presence of amorphous carbon and nanocrystalline diamond at the groove bottom, indicating phase transformation and also the formation of nanoscale diamond particles in regions of concentrated femtosecond laser energy. This study provides experimental and theoretical support for the high-quality fabrication of micro-nano structures on diamond, with significant implications for its advanced applications.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111755"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the fabrication of high-quality patterned diamond using femtosecond laser\",\"authors\":\"Junjie Zou ,&nbsp;Qijun Wang ,&nbsp;Wei Shen ,&nbsp;Sheng Peng ,&nbsp;Zijun Qi ,&nbsp;Gai Wu ,&nbsp;Qiang Cao ,&nbsp;Sheng Liu\",\"doi\":\"10.1016/j.diamond.2024.111755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diamond, known for its exceptional thermal, electrical, and mechanical properties, is widely used in precision machining tools, MEMS, and electronic devices. However, because of its extreme hardness and chemical inertness, diamond machining is highly challenging. Femtosecond laser technology, with its high instantaneous energy and minimal heat-affected zone, has emerged as an effective method for the precision machining of diamond. This study explores the application of 1026 nm and 513 nm femtosecond lasers in diamond grooving. The experimental results indicate that with increasing laser energy density, both groove width and depth increase, accompanied by a rise in amorphous carbon and graphite contents, resulting in increased tensile stress and decreased crystallinity in the machined region. Notably, the 513 nm laser demonstrates higher precision, achieving narrower grooves suitable for fine machining of diamond. Molecular dynamics simulations and experimental data reveal that the formation of amorphous carbon and graphite phases is the primary mechanism for deep ablation, and no significant anisotropy is observed during the process, allowing for the uniform fabrication of micro-nanostructures. TEM analysis confirms the presence of amorphous carbon and nanocrystalline diamond at the groove bottom, indicating phase transformation and also the formation of nanoscale diamond particles in regions of concentrated femtosecond laser energy. This study provides experimental and theoretical support for the high-quality fabrication of micro-nano structures on diamond, with significant implications for its advanced applications.</div></div>\",\"PeriodicalId\":11266,\"journal\":{\"name\":\"Diamond and Related Materials\",\"volume\":\"150 \",\"pages\":\"Article 111755\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diamond and Related Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925963524009683\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009683","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

金刚石以其优异的热性能、电性能和机械性能而闻名,被广泛应用于精密加工工具、微机电系统和电子设备中。然而,由于金刚石具有极高的硬度和化学惰性,金刚石加工具有很高的挑战性。飞秒激光技术具有瞬时能量高、热影响区小的特点,已成为金刚石精密加工的有效方法。本研究探讨了 1026 nm 和 513 nm 飞秒激光在金刚石开槽加工中的应用。实验结果表明,随着激光能量密度的增加,沟槽宽度和深度都会增加,同时无定形碳和石墨含量也会增加,从而导致加工区域的拉伸应力增加,结晶度降低。值得注意的是,513 nm 激光显示出更高的精度,可获得适合金刚石精细加工的更窄沟槽。分子动力学模拟和实验数据显示,无定形碳和石墨相的形成是深度烧蚀的主要机制,在此过程中没有观察到明显的各向异性,因此可以均匀地制造微纳米结构。TEM 分析证实了沟槽底部存在无定形碳和纳米晶金刚石,表明在飞秒激光能量集中的区域存在相变并形成了纳米级金刚石颗粒。这项研究为在金刚石上高质量地制造微纳结构提供了实验和理论支持,对金刚石的先进应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Research on the fabrication of high-quality patterned diamond using femtosecond laser

Research on the fabrication of high-quality patterned diamond using femtosecond laser
Diamond, known for its exceptional thermal, electrical, and mechanical properties, is widely used in precision machining tools, MEMS, and electronic devices. However, because of its extreme hardness and chemical inertness, diamond machining is highly challenging. Femtosecond laser technology, with its high instantaneous energy and minimal heat-affected zone, has emerged as an effective method for the precision machining of diamond. This study explores the application of 1026 nm and 513 nm femtosecond lasers in diamond grooving. The experimental results indicate that with increasing laser energy density, both groove width and depth increase, accompanied by a rise in amorphous carbon and graphite contents, resulting in increased tensile stress and decreased crystallinity in the machined region. Notably, the 513 nm laser demonstrates higher precision, achieving narrower grooves suitable for fine machining of diamond. Molecular dynamics simulations and experimental data reveal that the formation of amorphous carbon and graphite phases is the primary mechanism for deep ablation, and no significant anisotropy is observed during the process, allowing for the uniform fabrication of micro-nanostructures. TEM analysis confirms the presence of amorphous carbon and nanocrystalline diamond at the groove bottom, indicating phase transformation and also the formation of nanoscale diamond particles in regions of concentrated femtosecond laser energy. This study provides experimental and theoretical support for the high-quality fabrication of micro-nano structures on diamond, with significant implications for its advanced applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diamond and Related Materials
Diamond and Related Materials 工程技术-材料科学:综合
CiteScore
6.00
自引率
14.60%
发文量
702
审稿时长
2.1 months
期刊介绍: DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices. The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信