{"title":"表面活性物质对低温环境中热应力改性多壁碳纳米管宏观分散行为的影响","authors":"Aykut YİRMİBEŞOĞLU , Nihan KAYA , Filiz BORAN","doi":"10.1016/j.diamond.2024.111739","DOIUrl":null,"url":null,"abstract":"<div><div>In the preparation of nanocomposites, the agglomeration of multi-walled carbon nanotubes (MWCNTs) in the composite due to their low colloidal stability limits their use in industrial areas. To overcome these problems, it is important to develop simpler, economical, high-yield and non-hazardous techniques to replace existing techniques with low yields, expensive additional equipment or hazardous liquids. This study explores how surfactants affect the macrodispersion of thermal stress-modified MWCNTs in cryogenic environments, focusing on their application in polymer film preparation. Firstly, optimal conditions for modifying MWCNTs through thermal stress were identified using liquid nitrogen. Parameters assessed included the number of cycles (2, 4, and 6), duration in liquid nitrogen (10, 20, and 30 min), and subsequent waiting time at room temperature (5, 12, and 20 min). Results showed that the highest surface area was obtained with 2 cycles, 20 min in liquid nitrogen, and 5 min at room temperature. Analytical techniques such as Brunauer-Emmett-Teller (BET), X-Ray Diffraction (XRD), High Contrast Transmission Electron Microscopy (CTEM) and Raman spectroscopy were used to evaluate the functionalization process's effects on MWCNTs' internal graphitic structure and physicochemical properties. CTEM micrographs indicated that thermal stress reduced the length of MWCNTs, while Raman analysis showed improved graphite quality. The modification process, carried out with 100 % efficiency and no sample loss, increased the BET surface area from 297.551 m<sup>2</sup>/g to 397.295 m<sup>2</sup>/g. The study also investigated the impact of surfactants (polyethylene glycol sorbitan monooleate-Tween 80, sodium dodecyl sulfate-SDS, and hexadecyltrimethylammonium bromide-CTAB) on MWCNTs' macrodispersion degrees (DM%) and energy band gaps via UV–visible (UV–Vis) absorption spectroscopy. CTAB provided the highest and most stable macrodispersion, reducing the energy band gaps of MWCNTs from 5.65–5.75 eV to 3.53–3.60 eV. CTAB showed excellent colloidal stability with a zeta potential of 44.2 mV, while SDS had −49.9 mV. Polyvinyl alcohol (PVA) polymer films, created using MWCNT solutions with optimal macrodispersion, were confirmed by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimeters (DSC), and BET surface area analyses to have successfully and homogeneously incorporated MWCNTs. In addition to the superior properties of MWCNTs modified with the functionalization technique developed within the scope of this study by increasing their specific surface area and porosity, the excellent colloidal stability provided may have various effects in many industrial areas. These advantages enable MWCNTs functionalized with the developed technique to have a wider range of applications in industrial applications and provide more efficient and sustainable solutions.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111739"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of surface-active substances on the macrodispersion behavior of thermal stress-modified multi-wall carbon nanotubes in cryogenic environments\",\"authors\":\"Aykut YİRMİBEŞOĞLU , Nihan KAYA , Filiz BORAN\",\"doi\":\"10.1016/j.diamond.2024.111739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the preparation of nanocomposites, the agglomeration of multi-walled carbon nanotubes (MWCNTs) in the composite due to their low colloidal stability limits their use in industrial areas. To overcome these problems, it is important to develop simpler, economical, high-yield and non-hazardous techniques to replace existing techniques with low yields, expensive additional equipment or hazardous liquids. This study explores how surfactants affect the macrodispersion of thermal stress-modified MWCNTs in cryogenic environments, focusing on their application in polymer film preparation. Firstly, optimal conditions for modifying MWCNTs through thermal stress were identified using liquid nitrogen. Parameters assessed included the number of cycles (2, 4, and 6), duration in liquid nitrogen (10, 20, and 30 min), and subsequent waiting time at room temperature (5, 12, and 20 min). Results showed that the highest surface area was obtained with 2 cycles, 20 min in liquid nitrogen, and 5 min at room temperature. Analytical techniques such as Brunauer-Emmett-Teller (BET), X-Ray Diffraction (XRD), High Contrast Transmission Electron Microscopy (CTEM) and Raman spectroscopy were used to evaluate the functionalization process's effects on MWCNTs' internal graphitic structure and physicochemical properties. CTEM micrographs indicated that thermal stress reduced the length of MWCNTs, while Raman analysis showed improved graphite quality. The modification process, carried out with 100 % efficiency and no sample loss, increased the BET surface area from 297.551 m<sup>2</sup>/g to 397.295 m<sup>2</sup>/g. The study also investigated the impact of surfactants (polyethylene glycol sorbitan monooleate-Tween 80, sodium dodecyl sulfate-SDS, and hexadecyltrimethylammonium bromide-CTAB) on MWCNTs' macrodispersion degrees (DM%) and energy band gaps via UV–visible (UV–Vis) absorption spectroscopy. CTAB provided the highest and most stable macrodispersion, reducing the energy band gaps of MWCNTs from 5.65–5.75 eV to 3.53–3.60 eV. CTAB showed excellent colloidal stability with a zeta potential of 44.2 mV, while SDS had −49.9 mV. Polyvinyl alcohol (PVA) polymer films, created using MWCNT solutions with optimal macrodispersion, were confirmed by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimeters (DSC), and BET surface area analyses to have successfully and homogeneously incorporated MWCNTs. In addition to the superior properties of MWCNTs modified with the functionalization technique developed within the scope of this study by increasing their specific surface area and porosity, the excellent colloidal stability provided may have various effects in many industrial areas. These advantages enable MWCNTs functionalized with the developed technique to have a wider range of applications in industrial applications and provide more efficient and sustainable solutions.</div></div>\",\"PeriodicalId\":11266,\"journal\":{\"name\":\"Diamond and Related Materials\",\"volume\":\"150 \",\"pages\":\"Article 111739\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diamond and Related Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092596352400952X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092596352400952X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Effect of surface-active substances on the macrodispersion behavior of thermal stress-modified multi-wall carbon nanotubes in cryogenic environments
In the preparation of nanocomposites, the agglomeration of multi-walled carbon nanotubes (MWCNTs) in the composite due to their low colloidal stability limits their use in industrial areas. To overcome these problems, it is important to develop simpler, economical, high-yield and non-hazardous techniques to replace existing techniques with low yields, expensive additional equipment or hazardous liquids. This study explores how surfactants affect the macrodispersion of thermal stress-modified MWCNTs in cryogenic environments, focusing on their application in polymer film preparation. Firstly, optimal conditions for modifying MWCNTs through thermal stress were identified using liquid nitrogen. Parameters assessed included the number of cycles (2, 4, and 6), duration in liquid nitrogen (10, 20, and 30 min), and subsequent waiting time at room temperature (5, 12, and 20 min). Results showed that the highest surface area was obtained with 2 cycles, 20 min in liquid nitrogen, and 5 min at room temperature. Analytical techniques such as Brunauer-Emmett-Teller (BET), X-Ray Diffraction (XRD), High Contrast Transmission Electron Microscopy (CTEM) and Raman spectroscopy were used to evaluate the functionalization process's effects on MWCNTs' internal graphitic structure and physicochemical properties. CTEM micrographs indicated that thermal stress reduced the length of MWCNTs, while Raman analysis showed improved graphite quality. The modification process, carried out with 100 % efficiency and no sample loss, increased the BET surface area from 297.551 m2/g to 397.295 m2/g. The study also investigated the impact of surfactants (polyethylene glycol sorbitan monooleate-Tween 80, sodium dodecyl sulfate-SDS, and hexadecyltrimethylammonium bromide-CTAB) on MWCNTs' macrodispersion degrees (DM%) and energy band gaps via UV–visible (UV–Vis) absorption spectroscopy. CTAB provided the highest and most stable macrodispersion, reducing the energy band gaps of MWCNTs from 5.65–5.75 eV to 3.53–3.60 eV. CTAB showed excellent colloidal stability with a zeta potential of 44.2 mV, while SDS had −49.9 mV. Polyvinyl alcohol (PVA) polymer films, created using MWCNT solutions with optimal macrodispersion, were confirmed by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimeters (DSC), and BET surface area analyses to have successfully and homogeneously incorporated MWCNTs. In addition to the superior properties of MWCNTs modified with the functionalization technique developed within the scope of this study by increasing their specific surface area and porosity, the excellent colloidal stability provided may have various effects in many industrial areas. These advantages enable MWCNTs functionalized with the developed technique to have a wider range of applications in industrial applications and provide more efficient and sustainable solutions.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.