Dan Ji, Yaping Wang, Mengqing Luo, Zihao Zhang, Xiaohua Chang, Yutian Zhu
{"title":"乳液液滴中嵌段共聚物颗粒在 pH 值和光线触发下的形状变化","authors":"Dan Ji, Yaping Wang, Mengqing Luo, Zihao Zhang, Xiaohua Chang, Yutian Zhu","doi":"10.1016/j.eurpolymj.2024.113561","DOIUrl":null,"url":null,"abstract":"<div><div>Dual-responsive shape-transformable block copolymer (BCP) particles have arisen great attentions because of their tunable physical and chemical characteristics triggered by external stimuli. Herein, we developed a simple yet effective strategy to realize pH and light dual-triggered shape-switchable BCP particles through the co-assembly of BCPs with photo-responsive additive 4-hydroxyazobenzene (Azo-OH) within the evaporation emulsion droplets. The formation of hydrogen bonding interactions between the Azo-OH and 4-vinylpyridine (4VP) unit increases the volume fraction of P4VP domain, in turn leading to a morphological transition of the particles from onions to pupas by tuning the Azo-OH content. Subsequent light-induced <em>trans</em>–<em>cis</em> transition of the Azo unit induces the enhancement of the hydrophilicity of the P4VP domains, giving rise to internal shape transitions of the BCP particles from pupas to onions with P4VP at the outmost-layer. Furtherly, since the hydrogen bonds between Azo-OH and 4VP group are sensitive to pH, the interfacial properties of the emulsion droplets and the assembled structures are tuned through adjusting the environment pH of the aqueous solution, causing the formation of various particle shape, including pupas, raspberries, and onions. This work offers a promising method to engineer the microstructures of polymeric assemblies, which may attract more attention on the applications of the stimuli-responsive particles.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"221 ","pages":"Article 113561"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH and light-triggered shape transformation of block copolymer particles in emulsion droplets\",\"authors\":\"Dan Ji, Yaping Wang, Mengqing Luo, Zihao Zhang, Xiaohua Chang, Yutian Zhu\",\"doi\":\"10.1016/j.eurpolymj.2024.113561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dual-responsive shape-transformable block copolymer (BCP) particles have arisen great attentions because of their tunable physical and chemical characteristics triggered by external stimuli. Herein, we developed a simple yet effective strategy to realize pH and light dual-triggered shape-switchable BCP particles through the co-assembly of BCPs with photo-responsive additive 4-hydroxyazobenzene (Azo-OH) within the evaporation emulsion droplets. The formation of hydrogen bonding interactions between the Azo-OH and 4-vinylpyridine (4VP) unit increases the volume fraction of P4VP domain, in turn leading to a morphological transition of the particles from onions to pupas by tuning the Azo-OH content. Subsequent light-induced <em>trans</em>–<em>cis</em> transition of the Azo unit induces the enhancement of the hydrophilicity of the P4VP domains, giving rise to internal shape transitions of the BCP particles from pupas to onions with P4VP at the outmost-layer. Furtherly, since the hydrogen bonds between Azo-OH and 4VP group are sensitive to pH, the interfacial properties of the emulsion droplets and the assembled structures are tuned through adjusting the environment pH of the aqueous solution, causing the formation of various particle shape, including pupas, raspberries, and onions. This work offers a promising method to engineer the microstructures of polymeric assemblies, which may attract more attention on the applications of the stimuli-responsive particles.</div></div>\",\"PeriodicalId\":315,\"journal\":{\"name\":\"European Polymer Journal\",\"volume\":\"221 \",\"pages\":\"Article 113561\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001430572400822X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001430572400822X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
pH and light-triggered shape transformation of block copolymer particles in emulsion droplets
Dual-responsive shape-transformable block copolymer (BCP) particles have arisen great attentions because of their tunable physical and chemical characteristics triggered by external stimuli. Herein, we developed a simple yet effective strategy to realize pH and light dual-triggered shape-switchable BCP particles through the co-assembly of BCPs with photo-responsive additive 4-hydroxyazobenzene (Azo-OH) within the evaporation emulsion droplets. The formation of hydrogen bonding interactions between the Azo-OH and 4-vinylpyridine (4VP) unit increases the volume fraction of P4VP domain, in turn leading to a morphological transition of the particles from onions to pupas by tuning the Azo-OH content. Subsequent light-induced trans–cis transition of the Azo unit induces the enhancement of the hydrophilicity of the P4VP domains, giving rise to internal shape transitions of the BCP particles from pupas to onions with P4VP at the outmost-layer. Furtherly, since the hydrogen bonds between Azo-OH and 4VP group are sensitive to pH, the interfacial properties of the emulsion droplets and the assembled structures are tuned through adjusting the environment pH of the aqueous solution, causing the formation of various particle shape, including pupas, raspberries, and onions. This work offers a promising method to engineer the microstructures of polymeric assemblies, which may attract more attention on the applications of the stimuli-responsive particles.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.