{"title":"基于空调系统启动/停止时间预测的数据增强卷积网络","authors":"Huaqiu Wang, Jiahao Tan","doi":"10.1016/j.ijrefrig.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>Most enterprise workshop operators frequently adjust the start/stop time of air conditioning systems based on indoor and outdoor temperatures and humidity to accommodate changing demand and weather conditions. However, relying on personal subjective experience for these adjustments often leads to operational delays or energy waste due to the lack of precision in determining optimal timing. Predicting air conditioning system start and stop times is crucial for energy consumption and savings in HVAC systems. Traditional data-driven methods have been insufficient in this regard, as they mainly focus on feature mapping and overlook the dynamic coupling relationships of process variables, resulting in subpar predictions. In response to this challenge, the paper introduces a novel approach known as the Periodicity and Long-Term Convolutional Neural Network (PLCNN). This method converts one-dimensional regression prediction data into two-dimensional data containing time series features to capture the dynamic coupling characteristics of the air conditioning system while maintaining the independent variation relationships of features. Experimental results using real factory floor data have demonstrated the superior performance of the PLCNN method. Specifically, this method achieved a 14.96% lower error rate compared to the traditional method and an 8.18% improvement compared to the deep learning method. Moreover, the implementation of the PLCNN method in the optimal control of air conditioning systems led to a significant 19.43% reduction in total monthly energy consumption. In conclusion, the proposed method offers a promising alternative to traditional approaches to forecasting and provides a solution to the common challenges encountered in traditional prediction tasks.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"169 ","pages":"Pages 372-382"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-enhanced convolutional network based on air conditioning system start/stop time prediction\",\"authors\":\"Huaqiu Wang, Jiahao Tan\",\"doi\":\"10.1016/j.ijrefrig.2024.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Most enterprise workshop operators frequently adjust the start/stop time of air conditioning systems based on indoor and outdoor temperatures and humidity to accommodate changing demand and weather conditions. However, relying on personal subjective experience for these adjustments often leads to operational delays or energy waste due to the lack of precision in determining optimal timing. Predicting air conditioning system start and stop times is crucial for energy consumption and savings in HVAC systems. Traditional data-driven methods have been insufficient in this regard, as they mainly focus on feature mapping and overlook the dynamic coupling relationships of process variables, resulting in subpar predictions. In response to this challenge, the paper introduces a novel approach known as the Periodicity and Long-Term Convolutional Neural Network (PLCNN). This method converts one-dimensional regression prediction data into two-dimensional data containing time series features to capture the dynamic coupling characteristics of the air conditioning system while maintaining the independent variation relationships of features. Experimental results using real factory floor data have demonstrated the superior performance of the PLCNN method. Specifically, this method achieved a 14.96% lower error rate compared to the traditional method and an 8.18% improvement compared to the deep learning method. Moreover, the implementation of the PLCNN method in the optimal control of air conditioning systems led to a significant 19.43% reduction in total monthly energy consumption. In conclusion, the proposed method offers a promising alternative to traditional approaches to forecasting and provides a solution to the common challenges encountered in traditional prediction tasks.</div></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":\"169 \",\"pages\":\"Pages 372-382\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724003852\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003852","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Data-enhanced convolutional network based on air conditioning system start/stop time prediction
Most enterprise workshop operators frequently adjust the start/stop time of air conditioning systems based on indoor and outdoor temperatures and humidity to accommodate changing demand and weather conditions. However, relying on personal subjective experience for these adjustments often leads to operational delays or energy waste due to the lack of precision in determining optimal timing. Predicting air conditioning system start and stop times is crucial for energy consumption and savings in HVAC systems. Traditional data-driven methods have been insufficient in this regard, as they mainly focus on feature mapping and overlook the dynamic coupling relationships of process variables, resulting in subpar predictions. In response to this challenge, the paper introduces a novel approach known as the Periodicity and Long-Term Convolutional Neural Network (PLCNN). This method converts one-dimensional regression prediction data into two-dimensional data containing time series features to capture the dynamic coupling characteristics of the air conditioning system while maintaining the independent variation relationships of features. Experimental results using real factory floor data have demonstrated the superior performance of the PLCNN method. Specifically, this method achieved a 14.96% lower error rate compared to the traditional method and an 8.18% improvement compared to the deep learning method. Moreover, the implementation of the PLCNN method in the optimal control of air conditioning systems led to a significant 19.43% reduction in total monthly energy consumption. In conclusion, the proposed method offers a promising alternative to traditional approaches to forecasting and provides a solution to the common challenges encountered in traditional prediction tasks.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.