{"title":"碳排放交易体系的建立如何影响为硫排放控制区设计的船舶减排策略","authors":"Tingsong Wang , Peiyue Cheng , Yadong Wang","doi":"10.1016/j.tranpol.2024.11.006","DOIUrl":null,"url":null,"abstract":"<div><div>As the backbone of the international seaborne trade, the pollution and emission from shipping are highly concerned by governments and international organizations as well. The International Maritime Organization has designated five emission control areas (ECAs) to limit sulfur oxides emissions of ships. Meanwhile, the European Union has included the shipping industry in the EU Emission Trading System since 2024 to control their carbon emissions. The strategies like switching fuel, installing scrubber or detour, are commonly used to comply with the ECA regulation, but they may increase carbon emissions and possibly incur extra carbon trading cost. In this case, the shipping company should investigate the influence of marine emission trading system (METS) on emission reduction strategies used under ECA regulation. Therefore, this paper focuses on this problem and formulates it as a mixed-integer nonlinear programming model. Several numerical experiments are conducted to show the applicability of the proposed model. The results show that ship's detour behavior is inevitable under the ECA regulation, which incurs more carbon emissions. When METS regulation is not considered, the optimal emission reduction strategy is installing scrubber. In contrast, when METS regulation is considered, the optimal choice may be installing scrubber or fuel switching depending on different sailing route, which indicates the effect of METS on ship emission reduction strategy. Moreover, the fleet deployment and sailing speed of scrubber installation strategy are affected by METS regulation, while the strategies of fuel switching and using LNG-powered ship are almost unaffected. This indicates that installing scrubber is more easily affected by emission control policies.</div></div>","PeriodicalId":48378,"journal":{"name":"Transport Policy","volume":"160 ","pages":"Pages 138-153"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How the establishment of carbon emission trading system affects ship emission reduction strategies designed for sulfur emission control area\",\"authors\":\"Tingsong Wang , Peiyue Cheng , Yadong Wang\",\"doi\":\"10.1016/j.tranpol.2024.11.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As the backbone of the international seaborne trade, the pollution and emission from shipping are highly concerned by governments and international organizations as well. The International Maritime Organization has designated five emission control areas (ECAs) to limit sulfur oxides emissions of ships. Meanwhile, the European Union has included the shipping industry in the EU Emission Trading System since 2024 to control their carbon emissions. The strategies like switching fuel, installing scrubber or detour, are commonly used to comply with the ECA regulation, but they may increase carbon emissions and possibly incur extra carbon trading cost. In this case, the shipping company should investigate the influence of marine emission trading system (METS) on emission reduction strategies used under ECA regulation. Therefore, this paper focuses on this problem and formulates it as a mixed-integer nonlinear programming model. Several numerical experiments are conducted to show the applicability of the proposed model. The results show that ship's detour behavior is inevitable under the ECA regulation, which incurs more carbon emissions. When METS regulation is not considered, the optimal emission reduction strategy is installing scrubber. In contrast, when METS regulation is considered, the optimal choice may be installing scrubber or fuel switching depending on different sailing route, which indicates the effect of METS on ship emission reduction strategy. Moreover, the fleet deployment and sailing speed of scrubber installation strategy are affected by METS regulation, while the strategies of fuel switching and using LNG-powered ship are almost unaffected. This indicates that installing scrubber is more easily affected by emission control policies.</div></div>\",\"PeriodicalId\":48378,\"journal\":{\"name\":\"Transport Policy\",\"volume\":\"160 \",\"pages\":\"Pages 138-153\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport Policy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967070X24003378\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Policy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967070X24003378","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
How the establishment of carbon emission trading system affects ship emission reduction strategies designed for sulfur emission control area
As the backbone of the international seaborne trade, the pollution and emission from shipping are highly concerned by governments and international organizations as well. The International Maritime Organization has designated five emission control areas (ECAs) to limit sulfur oxides emissions of ships. Meanwhile, the European Union has included the shipping industry in the EU Emission Trading System since 2024 to control their carbon emissions. The strategies like switching fuel, installing scrubber or detour, are commonly used to comply with the ECA regulation, but they may increase carbon emissions and possibly incur extra carbon trading cost. In this case, the shipping company should investigate the influence of marine emission trading system (METS) on emission reduction strategies used under ECA regulation. Therefore, this paper focuses on this problem and formulates it as a mixed-integer nonlinear programming model. Several numerical experiments are conducted to show the applicability of the proposed model. The results show that ship's detour behavior is inevitable under the ECA regulation, which incurs more carbon emissions. When METS regulation is not considered, the optimal emission reduction strategy is installing scrubber. In contrast, when METS regulation is considered, the optimal choice may be installing scrubber or fuel switching depending on different sailing route, which indicates the effect of METS on ship emission reduction strategy. Moreover, the fleet deployment and sailing speed of scrubber installation strategy are affected by METS regulation, while the strategies of fuel switching and using LNG-powered ship are almost unaffected. This indicates that installing scrubber is more easily affected by emission control policies.
期刊介绍:
Transport Policy is an international journal aimed at bridging the gap between theory and practice in transport. Its subject areas reflect the concerns of policymakers in government, industry, voluntary organisations and the public at large, providing independent, original and rigorous analysis to understand how policy decisions have been taken, monitor their effects, and suggest how they may be improved. The journal treats the transport sector comprehensively, and in the context of other sectors including energy, housing, industry and planning. All modes are covered: land, sea and air; road and rail; public and private; motorised and non-motorised; passenger and freight.