微纳米气泡增强固定化小球藻去除地下水中的氧氟沙星

IF 3.5 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Mengyao Jing , Jianping Zhang , Guijuan Li , Dan Zhang , Fengjia Liu , Shengke Yang
{"title":"微纳米气泡增强固定化小球藻去除地下水中的氧氟沙星","authors":"Mengyao Jing ,&nbsp;Jianping Zhang ,&nbsp;Guijuan Li ,&nbsp;Dan Zhang ,&nbsp;Fengjia Liu ,&nbsp;Shengke Yang","doi":"10.1016/j.jconhyd.2024.104458","DOIUrl":null,"url":null,"abstract":"<div><div>The phenomenon of antibiotic pollution has emerged as a significant global environmental concern. However, there is a lack of technical research on the effective removal of antibiotics based on the characteristics of the groundwater environment. This paper used micro-nano bubbles (MNBs) enhanced immobilized Chlorella technology to remove ofloxacin (OFLX) from groundwater. The study discussed the impact of initial antibiotic concentration (5–30 mg/mL), algae concentration (0.25–4 bead/mL), aeration time (5–30 min), and coexisting ions on the antibiotic removal rate and analyzed the removal mechanism by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The results showed that MNBs increased <em>Chlorella vulgaris</em> biomass by 2.48 times and significantly improved OFLX removal efficiency. The removal rate of OFLX exhibited a significant positive correlation with the algal concentration and coexisting ions and a significant negative correlation with the aeration time and the initial concentration of antibiotics. Enhanced immobilization of <em>Chlorella vulgaris</em> by MNBs for OFLX removal may involve -NH, -OH, -C=O, -CH<sub>2</sub>, and -C-O-C groups. Degradation (including biodegradation and non-biodegradation) is the primary mechanism of antibiotic removal. Overall, intensive immobilization of Chlorella by MNBs promises to be a technically feasible method for removing antibiotics from groundwater.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"268 ","pages":"Article 104458"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-nano bubbles enhanced immobilized Chlorella vulgaris to remove ofloxacin from groundwater\",\"authors\":\"Mengyao Jing ,&nbsp;Jianping Zhang ,&nbsp;Guijuan Li ,&nbsp;Dan Zhang ,&nbsp;Fengjia Liu ,&nbsp;Shengke Yang\",\"doi\":\"10.1016/j.jconhyd.2024.104458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The phenomenon of antibiotic pollution has emerged as a significant global environmental concern. However, there is a lack of technical research on the effective removal of antibiotics based on the characteristics of the groundwater environment. This paper used micro-nano bubbles (MNBs) enhanced immobilized Chlorella technology to remove ofloxacin (OFLX) from groundwater. The study discussed the impact of initial antibiotic concentration (5–30 mg/mL), algae concentration (0.25–4 bead/mL), aeration time (5–30 min), and coexisting ions on the antibiotic removal rate and analyzed the removal mechanism by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The results showed that MNBs increased <em>Chlorella vulgaris</em> biomass by 2.48 times and significantly improved OFLX removal efficiency. The removal rate of OFLX exhibited a significant positive correlation with the algal concentration and coexisting ions and a significant negative correlation with the aeration time and the initial concentration of antibiotics. Enhanced immobilization of <em>Chlorella vulgaris</em> by MNBs for OFLX removal may involve -NH, -OH, -C=O, -CH<sub>2</sub>, and -C-O-C groups. Degradation (including biodegradation and non-biodegradation) is the primary mechanism of antibiotic removal. Overall, intensive immobilization of Chlorella by MNBs promises to be a technically feasible method for removing antibiotics from groundwater.</div></div>\",\"PeriodicalId\":15530,\"journal\":{\"name\":\"Journal of contaminant hydrology\",\"volume\":\"268 \",\"pages\":\"Article 104458\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of contaminant hydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224001621\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224001621","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

抗生素污染现象已成为全球关注的重要环境问题。然而,根据地下水环境的特点有效去除抗生素的技术研究还很缺乏。本文利用微纳米气泡(MNBs)增强固定化小球藻技术去除地下水中的氧氟沙星(OFLX)。研究探讨了初始抗生素浓度(5-30 mg/mL)、藻类浓度(0.25-4 珠/mL)、曝气时间(5-30 分钟)和共存离子对抗生素去除率的影响,并通过扫描电子显微镜(SEM)和傅立叶变换红外光谱(FT-IR)分析了去除机理。结果表明,MNBs 使小球藻的生物量增加了 2.48 倍,并显著提高了 OFLX 的去除率。OFLX 的去除率与藻类浓度和共存离子呈显著正相关,与曝气时间和抗生素的初始浓度呈显著负相关。MNBs 在去除 OFLX 方面对小球藻的强化固定作用可能涉及 -NH、-OH、-C=O、-CH2 和 -C-O-C 基团。降解(包括生物降解和非生物降解)是去除抗生素的主要机制。总之,用 MNBs 强化固定小球藻有望成为去除地下水中抗生素的一种技术上可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Micro-nano bubbles enhanced immobilized Chlorella vulgaris to remove ofloxacin from groundwater

Micro-nano bubbles enhanced immobilized Chlorella vulgaris to remove ofloxacin from groundwater
The phenomenon of antibiotic pollution has emerged as a significant global environmental concern. However, there is a lack of technical research on the effective removal of antibiotics based on the characteristics of the groundwater environment. This paper used micro-nano bubbles (MNBs) enhanced immobilized Chlorella technology to remove ofloxacin (OFLX) from groundwater. The study discussed the impact of initial antibiotic concentration (5–30 mg/mL), algae concentration (0.25–4 bead/mL), aeration time (5–30 min), and coexisting ions on the antibiotic removal rate and analyzed the removal mechanism by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The results showed that MNBs increased Chlorella vulgaris biomass by 2.48 times and significantly improved OFLX removal efficiency. The removal rate of OFLX exhibited a significant positive correlation with the algal concentration and coexisting ions and a significant negative correlation with the aeration time and the initial concentration of antibiotics. Enhanced immobilization of Chlorella vulgaris by MNBs for OFLX removal may involve -NH, -OH, -C=O, -CH2, and -C-O-C groups. Degradation (including biodegradation and non-biodegradation) is the primary mechanism of antibiotic removal. Overall, intensive immobilization of Chlorella by MNBs promises to be a technically feasible method for removing antibiotics from groundwater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of contaminant hydrology
Journal of contaminant hydrology 环境科学-地球科学综合
CiteScore
6.80
自引率
2.80%
发文量
129
审稿时长
68 days
期刊介绍: The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide). The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信