创新的平方根-无跟踪卡尔曼滤波策略与全参数在线识别用于锂离子电池的电量状态评估

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS
Shunli Wang , Quan Dang , Zhengqing Gao , Bowen Li , Carlos Fernandez , Frede Blaabjerg
{"title":"创新的平方根-无跟踪卡尔曼滤波策略与全参数在线识别用于锂离子电池的电量状态评估","authors":"Shunli Wang ,&nbsp;Quan Dang ,&nbsp;Zhengqing Gao ,&nbsp;Bowen Li ,&nbsp;Carlos Fernandez ,&nbsp;Frede Blaabjerg","doi":"10.1016/j.est.2024.114555","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of the thriving development of new energy vehicles, lithium-ion batteries, as a crucial component of the power storage system, will increasingly contribute to the strategic advancement of the industry, while this paper addresses three key issues in the estimation of lithium-ion battery state of charge (SOC) and state of power (SOP). Firstly, an online modified square root - untraced Kalman filtering (SR-UKF) algorithm is proposed to analyze the impact of temperature-induced capacity fluctuations, achieving highly accurate and adaptive SOC tracking. Secondly, an online multi-limit factor fusion analysis SOP estimation method is designed to mitigate computational complexity and enhance algorithm feasibility by addressing parameter fitting issues during offline identification. Thirdly, a real-time tracking data-based full-parameter online identification method is developed to enhance the accuracy of parameter identification and effectively describe internal and external factors. Experimental results demonstrate the algorithm's high accuracy, with a voltage simulation error below 0.04 V. Compared to traditional methods, the SR-UKF algorithm exhibits lower SOC simulation error below 2.36 %, offering a novel approach for SOC estimation under ambient temperature influences. Moreover, the proposed algorithm effectively estimates SOP, with a peak power estimation error of down to 66 W. In conclusion. This paper presents a novel SOC and SOP evaluation strategy, achieving a more reliable and accurate estimate under varying operating conditions.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114555"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An innovative square root - untraced Kalman filtering strategy with full-parameter online identification for state of power evaluation of lithium-ion batteries\",\"authors\":\"Shunli Wang ,&nbsp;Quan Dang ,&nbsp;Zhengqing Gao ,&nbsp;Bowen Li ,&nbsp;Carlos Fernandez ,&nbsp;Frede Blaabjerg\",\"doi\":\"10.1016/j.est.2024.114555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the context of the thriving development of new energy vehicles, lithium-ion batteries, as a crucial component of the power storage system, will increasingly contribute to the strategic advancement of the industry, while this paper addresses three key issues in the estimation of lithium-ion battery state of charge (SOC) and state of power (SOP). Firstly, an online modified square root - untraced Kalman filtering (SR-UKF) algorithm is proposed to analyze the impact of temperature-induced capacity fluctuations, achieving highly accurate and adaptive SOC tracking. Secondly, an online multi-limit factor fusion analysis SOP estimation method is designed to mitigate computational complexity and enhance algorithm feasibility by addressing parameter fitting issues during offline identification. Thirdly, a real-time tracking data-based full-parameter online identification method is developed to enhance the accuracy of parameter identification and effectively describe internal and external factors. Experimental results demonstrate the algorithm's high accuracy, with a voltage simulation error below 0.04 V. Compared to traditional methods, the SR-UKF algorithm exhibits lower SOC simulation error below 2.36 %, offering a novel approach for SOC estimation under ambient temperature influences. Moreover, the proposed algorithm effectively estimates SOP, with a peak power estimation error of down to 66 W. In conclusion. This paper presents a novel SOC and SOP evaluation strategy, achieving a more reliable and accurate estimate under varying operating conditions.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"104 \",\"pages\":\"Article 114555\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X24041410\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24041410","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在新能源汽车蓬勃发展的背景下,锂离子电池作为动力存储系统的重要组成部分,将越来越多地推动行业的战略进步,而本文则解决了锂离子电池充电状态(SOC)和电量状态(SOP)估算中的三个关键问题。首先,本文提出了一种在线修正平方根-非跟踪卡尔曼滤波(SR-UKF)算法,用于分析温度引起的容量波动的影响,实现了高精度和自适应的 SOC 跟踪。其次,设计了一种在线多限制因子融合分析 SOP 估算方法,通过解决离线识别过程中的参数拟合问题,降低了计算复杂度,提高了算法的可行性。第三,开发了一种基于实时跟踪数据的全参数在线识别方法,以提高参数识别的准确性,并有效地描述内部和外部因素。实验结果证明了该算法的高精度,电压模拟误差低于 0.04 V。与传统方法相比,SR-UKF 算法的 SOC 仿真误差低于 2.36%,为环境温度影响下的 SOC 估算提供了一种新方法。此外,所提出的算法还能有效估算 SOP,峰值功率估算误差低至 66 W。本文提出了一种新颖的 SOC 和 SOP 评估策略,在不同的工作条件下实现了更可靠、更准确的估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An innovative square root - untraced Kalman filtering strategy with full-parameter online identification for state of power evaluation of lithium-ion batteries
In the context of the thriving development of new energy vehicles, lithium-ion batteries, as a crucial component of the power storage system, will increasingly contribute to the strategic advancement of the industry, while this paper addresses three key issues in the estimation of lithium-ion battery state of charge (SOC) and state of power (SOP). Firstly, an online modified square root - untraced Kalman filtering (SR-UKF) algorithm is proposed to analyze the impact of temperature-induced capacity fluctuations, achieving highly accurate and adaptive SOC tracking. Secondly, an online multi-limit factor fusion analysis SOP estimation method is designed to mitigate computational complexity and enhance algorithm feasibility by addressing parameter fitting issues during offline identification. Thirdly, a real-time tracking data-based full-parameter online identification method is developed to enhance the accuracy of parameter identification and effectively describe internal and external factors. Experimental results demonstrate the algorithm's high accuracy, with a voltage simulation error below 0.04 V. Compared to traditional methods, the SR-UKF algorithm exhibits lower SOC simulation error below 2.36 %, offering a novel approach for SOC estimation under ambient temperature influences. Moreover, the proposed algorithm effectively estimates SOP, with a peak power estimation error of down to 66 W. In conclusion. This paper presents a novel SOC and SOP evaluation strategy, achieving a more reliable and accurate estimate under varying operating conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信