Palvinder Singh , Amit Sachdeva , Parmod K. Singh , M.Z.A. Yahya , S.N.F. Yusuf , Markus Diantoro , Famiza Abdul Latif
{"title":"硫化镉对聚(甲基丙烯酸乙酯)(PEMA)电解质纳米复合材料的影响及其在染料敏化太阳能电池(DSSC)中的应用","authors":"Palvinder Singh , Amit Sachdeva , Parmod K. Singh , M.Z.A. Yahya , S.N.F. Yusuf , Markus Diantoro , Famiza Abdul Latif","doi":"10.1016/j.cap.2024.10.017","DOIUrl":null,"url":null,"abstract":"<div><div>The detail study of structural and ionic conductivity characterization of Poly (ethyl methacrylate) (PEMA) based polymer composite electrolyte were modified by the incorporation of Cadmium sulphide (CdS) nanomaterial. PEMA in addition with 40 % wt. potassium iodide (KI) and ethylene carbonate (EC) having 60 % wt., has the highest ionic conductivity of 4.65 × 10<sup>−5</sup> S/cm when employed the solution casting technique. Cadmium Sulphide (CdS) was incorporated with PEMA + KI 40 % wt. + EC 60 % wt. sample to get maximum conductivity sample. The highest ionic conductivity 2.65×10<sup>−3</sup>S/cm, was attained at 7 % weight percentage of Cadmium sulphide (CdS). The conductive sample's morphology was examined using SEM, its amorphicity and crystalline structure was investigated using Fourier transform infrared (FTIR) technique, and FTIR 'wavenumbers of the maximum conductive sample of PEMA polymer + KI salt + EC plastizer and PEMA polymer + KI salt + EC plastizer + CdS nanoparticles were compared. X-ray diffraction (XRD) was used to identify the amorphous nature of the maximum conductive sample of polymer composite electrolyte. Differential scanning calorimetry (DSC) analysis was used to find out the glass transition (Tg) temperature of maximum conducting sample of polymer composite. The doctor blade method was employed to develop the dye sensitized solar cell (DSSC), and it had been observed that, under one sunlight situation, the energy conversion efficiency was 2.09 %, having parameters fill factor was 79.77 %.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 36-41"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of cadmium sulphide on poly (ethyl methacrylate) (PEMA) based electrolyte nanocomposite and its application in dye sensitized solar cell (DSSC)\",\"authors\":\"Palvinder Singh , Amit Sachdeva , Parmod K. Singh , M.Z.A. Yahya , S.N.F. Yusuf , Markus Diantoro , Famiza Abdul Latif\",\"doi\":\"10.1016/j.cap.2024.10.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The detail study of structural and ionic conductivity characterization of Poly (ethyl methacrylate) (PEMA) based polymer composite electrolyte were modified by the incorporation of Cadmium sulphide (CdS) nanomaterial. PEMA in addition with 40 % wt. potassium iodide (KI) and ethylene carbonate (EC) having 60 % wt., has the highest ionic conductivity of 4.65 × 10<sup>−5</sup> S/cm when employed the solution casting technique. Cadmium Sulphide (CdS) was incorporated with PEMA + KI 40 % wt. + EC 60 % wt. sample to get maximum conductivity sample. The highest ionic conductivity 2.65×10<sup>−3</sup>S/cm, was attained at 7 % weight percentage of Cadmium sulphide (CdS). The conductive sample's morphology was examined using SEM, its amorphicity and crystalline structure was investigated using Fourier transform infrared (FTIR) technique, and FTIR 'wavenumbers of the maximum conductive sample of PEMA polymer + KI salt + EC plastizer and PEMA polymer + KI salt + EC plastizer + CdS nanoparticles were compared. X-ray diffraction (XRD) was used to identify the amorphous nature of the maximum conductive sample of polymer composite electrolyte. Differential scanning calorimetry (DSC) analysis was used to find out the glass transition (Tg) temperature of maximum conducting sample of polymer composite. The doctor blade method was employed to develop the dye sensitized solar cell (DSSC), and it had been observed that, under one sunlight situation, the energy conversion efficiency was 2.09 %, having parameters fill factor was 79.77 %.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"69 \",\"pages\":\"Pages 36-41\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924002384\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002384","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of cadmium sulphide on poly (ethyl methacrylate) (PEMA) based electrolyte nanocomposite and its application in dye sensitized solar cell (DSSC)
The detail study of structural and ionic conductivity characterization of Poly (ethyl methacrylate) (PEMA) based polymer composite electrolyte were modified by the incorporation of Cadmium sulphide (CdS) nanomaterial. PEMA in addition with 40 % wt. potassium iodide (KI) and ethylene carbonate (EC) having 60 % wt., has the highest ionic conductivity of 4.65 × 10−5 S/cm when employed the solution casting technique. Cadmium Sulphide (CdS) was incorporated with PEMA + KI 40 % wt. + EC 60 % wt. sample to get maximum conductivity sample. The highest ionic conductivity 2.65×10−3S/cm, was attained at 7 % weight percentage of Cadmium sulphide (CdS). The conductive sample's morphology was examined using SEM, its amorphicity and crystalline structure was investigated using Fourier transform infrared (FTIR) technique, and FTIR 'wavenumbers of the maximum conductive sample of PEMA polymer + KI salt + EC plastizer and PEMA polymer + KI salt + EC plastizer + CdS nanoparticles were compared. X-ray diffraction (XRD) was used to identify the amorphous nature of the maximum conductive sample of polymer composite electrolyte. Differential scanning calorimetry (DSC) analysis was used to find out the glass transition (Tg) temperature of maximum conducting sample of polymer composite. The doctor blade method was employed to develop the dye sensitized solar cell (DSSC), and it had been observed that, under one sunlight situation, the energy conversion efficiency was 2.09 %, having parameters fill factor was 79.77 %.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.