随应变变化的拉什巴效应,以及变磁性 Janus V2SeTeO 单层中的自旋霍尔电导率

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Brahim Marfoua , Jisang Hong
{"title":"随应变变化的拉什巴效应,以及变磁性 Janus V2SeTeO 单层中的自旋霍尔电导率","authors":"Brahim Marfoua ,&nbsp;Jisang Hong","doi":"10.1016/j.cap.2024.10.014","DOIUrl":null,"url":null,"abstract":"<div><div>Altermagnets represent a distinctive class of antiferromagnetic materials characterized by non-overlapping spin bands and attract extensive research efforts. Herein, we investigate the interplay among electronic, magnetic, and spin transport phenomena of the Janus V<sub>2</sub>SeTeO monolayer. The Janus monolayer has a direct band gap of 0.32 eV. The Janus V<sub>2</sub>SeTeO layer has an in-plane magnetic anisotropy along (110) direction. The incorporation of spin-orbit coupling (SOC) induces a Rashba-type band structure with a Rashba coefficient of 1.02 eV Å. The Rashba coefficient is insensitive to the compressive strain. In contrast, it is suppressed with tensile strain and becomes almost zero at 3 % tensile strain. The maximum SHC of around ∼ −65 (ℏ/e)S/cm is achieved with hole doping. The magnitudes of SHC remain comparable to those in typical topological materials. Overall, this investigation provides fundamental insights into the magnetic, Rashba, and spin transport properties of the Janus V<sub>2</sub>SeTeO altermagnet monolayer.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"69 ","pages":"Pages 47-54"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-dependent Rashba effect, and spin Hall conductivity in the altermagnetic Janus V2SeTeO monolayer\",\"authors\":\"Brahim Marfoua ,&nbsp;Jisang Hong\",\"doi\":\"10.1016/j.cap.2024.10.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Altermagnets represent a distinctive class of antiferromagnetic materials characterized by non-overlapping spin bands and attract extensive research efforts. Herein, we investigate the interplay among electronic, magnetic, and spin transport phenomena of the Janus V<sub>2</sub>SeTeO monolayer. The Janus monolayer has a direct band gap of 0.32 eV. The Janus V<sub>2</sub>SeTeO layer has an in-plane magnetic anisotropy along (110) direction. The incorporation of spin-orbit coupling (SOC) induces a Rashba-type band structure with a Rashba coefficient of 1.02 eV Å. The Rashba coefficient is insensitive to the compressive strain. In contrast, it is suppressed with tensile strain and becomes almost zero at 3 % tensile strain. The maximum SHC of around ∼ −65 (ℏ/e)S/cm is achieved with hole doping. The magnitudes of SHC remain comparable to those in typical topological materials. Overall, this investigation provides fundamental insights into the magnetic, Rashba, and spin transport properties of the Janus V<sub>2</sub>SeTeO altermagnet monolayer.</div></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"69 \",\"pages\":\"Pages 47-54\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156717392400227X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156717392400227X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超磁是一类独特的反铁磁材料,其特点是自旋带不重叠,吸引了大量研究人员的关注。在此,我们研究了 Janus V2SeTeO 单层的电子、磁性和自旋传输现象之间的相互作用。Janus 单层的直接带隙为 0.32 eV。Janus V2SeTeO 层具有沿 (110) 方向的面内磁各向异性。自旋轨道耦合(SOC)的加入诱发了拉什巴系数为 1.02 eV Å 的拉什巴型带状结构。相反,拉伸应变会抑制拉什巴系数,当拉伸应变达到 3% 时,拉什巴系数几乎为零。掺入空穴后,SHC 的最大值约为∼ -65 (ℏ/e)S/cm 。SHC 的大小与典型拓扑材料的 SHC 大小相当。总之,这项研究提供了对 Janus V2SeTeO 变磁体单层的磁性、Rashba 和自旋传输特性的基本见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strain-dependent Rashba effect, and spin Hall conductivity in the altermagnetic Janus V2SeTeO monolayer

Strain-dependent Rashba effect, and spin Hall conductivity in the altermagnetic Janus V2SeTeO monolayer
Altermagnets represent a distinctive class of antiferromagnetic materials characterized by non-overlapping spin bands and attract extensive research efforts. Herein, we investigate the interplay among electronic, magnetic, and spin transport phenomena of the Janus V2SeTeO monolayer. The Janus monolayer has a direct band gap of 0.32 eV. The Janus V2SeTeO layer has an in-plane magnetic anisotropy along (110) direction. The incorporation of spin-orbit coupling (SOC) induces a Rashba-type band structure with a Rashba coefficient of 1.02 eV Å. The Rashba coefficient is insensitive to the compressive strain. In contrast, it is suppressed with tensile strain and becomes almost zero at 3 % tensile strain. The maximum SHC of around ∼ −65 (ℏ/e)S/cm is achieved with hole doping. The magnitudes of SHC remain comparable to those in typical topological materials. Overall, this investigation provides fundamental insights into the magnetic, Rashba, and spin transport properties of the Janus V2SeTeO altermagnet monolayer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信