利用第一原理研究,通过掺杂 Br-、Se- 和 Ge 原子优化 CoTiP 半休斯勒的热电特性

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Abir Bouchrit, Kamal Assiouan, Hanan Ziani, El khamkhami Jamal, Abdelfettah Achahbar
{"title":"利用第一原理研究,通过掺杂 Br-、Se- 和 Ge 原子优化 CoTiP 半休斯勒的热电特性","authors":"Abir Bouchrit,&nbsp;Kamal Assiouan,&nbsp;Hanan Ziani,&nbsp;El khamkhami Jamal,&nbsp;Abdelfettah Achahbar","doi":"10.1016/j.jpcs.2024.112449","DOIUrl":null,"url":null,"abstract":"<div><div>The optimization of thermoelectric materials is crucial for advancing energy conversion technologies. This study explores the electrical and thermoelectric properties of Br-, Ge-, and Se-doped CoTiP half-Heusler compounds using the plane-augmented-wave (PAW) method based on Density Functional Theory (DFT) alongside the semiclassical Boltzmann transport equation (BTE) and Debye-Callaway approximation. While previous research has focused on various doping strategies to enhance thermoelectric performance, specific impacts of Br, Ge, and Se doping on the electronic structure of CoTiP remain unexplored. Our analysis reveals that Ge-doped CoTiP exhibits the largest band gap energy of 1.2597 eV, followed by Se- and Br-doped structures with band gaps of 0.8064 eV and 0.678 eV, respectively. The Fermi level shifts towards the conduction band for both Br- and Se-doped alloys while shifting towards the valence band for Ge-doped alloys. Upon doping, we observe significant enhancements in the Seebeck coefficient and electrical conductivity. Power factor (S<sup>2</sup>σ) enhancements range from 0.01611 W/m K<sup>2</sup> for CoTiP<sub>0.875</sub>Br<sub>0.125</sub>, 0.03445 W/m K<sup>2</sup> for CoTiP<sub>0.875</sub>Se<sub>0.125</sub> and finally, 0.04191 W/m K<sup>2</sup> for CoTiP<sub>0.875</sub>Ge<sub>0.125</sub>, surpassing undoped material values by up to 93 %. Finally, the optimal value of figure of merit (ZT) increases to 0.65, 0.57, and 0.2 at 900 K, achieved by doping Ge, Se and Br, respectively, at the P site, with performance gain about 92 %. Hence, doping has optimized the thermoelectric performance of the CoTiP half-Heusler.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"198 ","pages":"Article 112449"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing thermoelectric properties of CoTiP half-Heusler via doping with Br-, Se- and Ge atoms using first principle study\",\"authors\":\"Abir Bouchrit,&nbsp;Kamal Assiouan,&nbsp;Hanan Ziani,&nbsp;El khamkhami Jamal,&nbsp;Abdelfettah Achahbar\",\"doi\":\"10.1016/j.jpcs.2024.112449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The optimization of thermoelectric materials is crucial for advancing energy conversion technologies. This study explores the electrical and thermoelectric properties of Br-, Ge-, and Se-doped CoTiP half-Heusler compounds using the plane-augmented-wave (PAW) method based on Density Functional Theory (DFT) alongside the semiclassical Boltzmann transport equation (BTE) and Debye-Callaway approximation. While previous research has focused on various doping strategies to enhance thermoelectric performance, specific impacts of Br, Ge, and Se doping on the electronic structure of CoTiP remain unexplored. Our analysis reveals that Ge-doped CoTiP exhibits the largest band gap energy of 1.2597 eV, followed by Se- and Br-doped structures with band gaps of 0.8064 eV and 0.678 eV, respectively. The Fermi level shifts towards the conduction band for both Br- and Se-doped alloys while shifting towards the valence band for Ge-doped alloys. Upon doping, we observe significant enhancements in the Seebeck coefficient and electrical conductivity. Power factor (S<sup>2</sup>σ) enhancements range from 0.01611 W/m K<sup>2</sup> for CoTiP<sub>0.875</sub>Br<sub>0.125</sub>, 0.03445 W/m K<sup>2</sup> for CoTiP<sub>0.875</sub>Se<sub>0.125</sub> and finally, 0.04191 W/m K<sup>2</sup> for CoTiP<sub>0.875</sub>Ge<sub>0.125</sub>, surpassing undoped material values by up to 93 %. Finally, the optimal value of figure of merit (ZT) increases to 0.65, 0.57, and 0.2 at 900 K, achieved by doping Ge, Se and Br, respectively, at the P site, with performance gain about 92 %. Hence, doping has optimized the thermoelectric performance of the CoTiP half-Heusler.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"198 \",\"pages\":\"Article 112449\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005845\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005845","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热电材料的优化对于推动能源转换技术的发展至关重要。本研究以密度泛函理论(DFT)为基础,结合半经典波尔兹曼输运方程(BTE)和德拜-卡拉韦近似,使用平面增强波(PAW)方法探讨了掺杂铍、锗和硒的 CoTiP 半休斯勒化合物的电学和热电性能。以前的研究主要集中在提高热电性能的各种掺杂策略上,但 Br、Ge 和 Se 掺杂对 CoTiP 电子结构的具体影响仍未得到探讨。我们的分析表明,掺杂 Ge 的 CoTiP 具有最大的带隙能 1.2597 eV,其次是掺杂 Se 和 Br 的结构,带隙能分别为 0.8064 eV 和 0.678 eV。掺杂 Br- 和 Se 的合金的费米级都向导带移动,而掺杂 Ge 的合金则向价带移动。掺杂后,我们观察到塞贝克系数和电导率显著提高。CoTiP0.875Br0.125 的功率因数(S2σ)提高了 0.01611 W/m K2,CoTiP0.875Se0.125 的功率因数提高了 0.03445 W/m K2,CoTiP0.875Ge0.125 的功率因数提高了 0.04191 W/m K2,比未掺杂材料的值高出 93%。最后,通过在 P 位点掺杂 Ge、Se 和 Br,900 K 时的最佳性能系数 (ZT) 分别增至 0.65、0.57 和 0.2,性能提高了约 92%。因此,掺杂优化了 CoTiP 半海斯勒的热电性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing thermoelectric properties of CoTiP half-Heusler via doping with Br-, Se- and Ge atoms using first principle study
The optimization of thermoelectric materials is crucial for advancing energy conversion technologies. This study explores the electrical and thermoelectric properties of Br-, Ge-, and Se-doped CoTiP half-Heusler compounds using the plane-augmented-wave (PAW) method based on Density Functional Theory (DFT) alongside the semiclassical Boltzmann transport equation (BTE) and Debye-Callaway approximation. While previous research has focused on various doping strategies to enhance thermoelectric performance, specific impacts of Br, Ge, and Se doping on the electronic structure of CoTiP remain unexplored. Our analysis reveals that Ge-doped CoTiP exhibits the largest band gap energy of 1.2597 eV, followed by Se- and Br-doped structures with band gaps of 0.8064 eV and 0.678 eV, respectively. The Fermi level shifts towards the conduction band for both Br- and Se-doped alloys while shifting towards the valence band for Ge-doped alloys. Upon doping, we observe significant enhancements in the Seebeck coefficient and electrical conductivity. Power factor (S2σ) enhancements range from 0.01611 W/m K2 for CoTiP0.875Br0.125, 0.03445 W/m K2 for CoTiP0.875Se0.125 and finally, 0.04191 W/m K2 for CoTiP0.875Ge0.125, surpassing undoped material values by up to 93 %. Finally, the optimal value of figure of merit (ZT) increases to 0.65, 0.57, and 0.2 at 900 K, achieved by doping Ge, Se and Br, respectively, at the P site, with performance gain about 92 %. Hence, doping has optimized the thermoelectric performance of the CoTiP half-Heusler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信