Khalid Mujasam Batoo , Iman Samir Alalaq , Rekha MM , Anurag Mishra , Shilpa Sharma , G.V. Siva Prasad , Muhammad Farzik Ijaz , Salima B. Alsaadi , Ahmed Ali Mtasher , Fadeel F. Seed
{"title":"一种新型 MoS2/Pd5 纳米簇异质结系统,具有更好的表面活性,可用于高效气体传感:DFT 研究","authors":"Khalid Mujasam Batoo , Iman Samir Alalaq , Rekha MM , Anurag Mishra , Shilpa Sharma , G.V. Siva Prasad , Muhammad Farzik Ijaz , Salima B. Alsaadi , Ahmed Ali Mtasher , Fadeel F. Seed","doi":"10.1016/j.susc.2024.122648","DOIUrl":null,"url":null,"abstract":"<div><div>Our work has reflected considerable interest in unique Pd nanocluster/MoS<sub>2</sub> heterojunction systems due to their potential applications in materials science, chemistry and physics. We focused on exploiting Pd<sub>5</sub>/MoS<sub>2</sub> nanocluster system, a novel heterojunction material for gas sensing applications. In addition, we exploited the electronic properties of Pd dopant on the MoS<sub>2</sub> surface to make a comparative study. Our DFT calculations indicate that the Pd<sub>5</sub>/MoS<sub>2</sub> heterojunction structure exhibits a higher affinity for adsorbing gas molecules such as CO, NH<sub>3</sub>, NO, and NO<sub>2</sub>, while the perfect MoS<sub>2</sub> shows weak gas adsorption capacity. Pd<sub>5</sub>/MoS<sub>2</sub> heterojunction exhibits semiconducting feature with a weakened and narrower band gap, making it more suitable for gas sensing due to its higher conductivity. We analyzed important factors like adsorption distance/energies, density of states, band structure and difference of electron density concerning adsorbed gases on the heterojunction surface. Based on the electron density difference maps, we can see the giant growth of charges over the adsorbed molecules, as well as between the adsorbing atoms. Based on our findings, the conductivity of the nanomaterial undergoes a remarkable change, which helps reinforce the applicability of the Pd<sub>5</sub>/MoS<sub>2</sub> heterojunction nanosystem in sensing and adsorbing gas molecules.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122648"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel MoS2/Pd5 nanocluster heterojunction system with improved surface reactivity for efficient gas sensing: A DFT study\",\"authors\":\"Khalid Mujasam Batoo , Iman Samir Alalaq , Rekha MM , Anurag Mishra , Shilpa Sharma , G.V. Siva Prasad , Muhammad Farzik Ijaz , Salima B. Alsaadi , Ahmed Ali Mtasher , Fadeel F. Seed\",\"doi\":\"10.1016/j.susc.2024.122648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our work has reflected considerable interest in unique Pd nanocluster/MoS<sub>2</sub> heterojunction systems due to their potential applications in materials science, chemistry and physics. We focused on exploiting Pd<sub>5</sub>/MoS<sub>2</sub> nanocluster system, a novel heterojunction material for gas sensing applications. In addition, we exploited the electronic properties of Pd dopant on the MoS<sub>2</sub> surface to make a comparative study. Our DFT calculations indicate that the Pd<sub>5</sub>/MoS<sub>2</sub> heterojunction structure exhibits a higher affinity for adsorbing gas molecules such as CO, NH<sub>3</sub>, NO, and NO<sub>2</sub>, while the perfect MoS<sub>2</sub> shows weak gas adsorption capacity. Pd<sub>5</sub>/MoS<sub>2</sub> heterojunction exhibits semiconducting feature with a weakened and narrower band gap, making it more suitable for gas sensing due to its higher conductivity. We analyzed important factors like adsorption distance/energies, density of states, band structure and difference of electron density concerning adsorbed gases on the heterojunction surface. Based on the electron density difference maps, we can see the giant growth of charges over the adsorbed molecules, as well as between the adsorbing atoms. Based on our findings, the conductivity of the nanomaterial undergoes a remarkable change, which helps reinforce the applicability of the Pd<sub>5</sub>/MoS<sub>2</sub> heterojunction nanosystem in sensing and adsorbing gas molecules.</div></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":\"752 \",\"pages\":\"Article 122648\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824001997\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001997","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A novel MoS2/Pd5 nanocluster heterojunction system with improved surface reactivity for efficient gas sensing: A DFT study
Our work has reflected considerable interest in unique Pd nanocluster/MoS2 heterojunction systems due to their potential applications in materials science, chemistry and physics. We focused on exploiting Pd5/MoS2 nanocluster system, a novel heterojunction material for gas sensing applications. In addition, we exploited the electronic properties of Pd dopant on the MoS2 surface to make a comparative study. Our DFT calculations indicate that the Pd5/MoS2 heterojunction structure exhibits a higher affinity for adsorbing gas molecules such as CO, NH3, NO, and NO2, while the perfect MoS2 shows weak gas adsorption capacity. Pd5/MoS2 heterojunction exhibits semiconducting feature with a weakened and narrower band gap, making it more suitable for gas sensing due to its higher conductivity. We analyzed important factors like adsorption distance/energies, density of states, band structure and difference of electron density concerning adsorbed gases on the heterojunction surface. Based on the electron density difference maps, we can see the giant growth of charges over the adsorbed molecules, as well as between the adsorbing atoms. Based on our findings, the conductivity of the nanomaterial undergoes a remarkable change, which helps reinforce the applicability of the Pd5/MoS2 heterojunction nanosystem in sensing and adsorbing gas molecules.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.