关于维数为 5 的线性编码的最小长度

IF 0.7 3区 数学 Q2 MATHEMATICS
E.J. Cheon , S.J. Kim , W. Kuranaka , T. Maruta
{"title":"关于维数为 5 的线性编码的最小长度","authors":"E.J. Cheon ,&nbsp;S.J. Kim ,&nbsp;W. Kuranaka ,&nbsp;T. Maruta","doi":"10.1016/j.disc.2024.114324","DOIUrl":null,"url":null,"abstract":"<div><div>A fundamental problem in coding theory is to find the exact value <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span>, the minimum length <em>n</em> for which an <span><math><msub><mrow><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>d</mi><mo>]</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> code exists for given <span><math><mi>q</mi><mo>,</mo><mi>k</mi></math></span> and <em>d</em>. The code of length <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> is called length optimal. Finding length optimal codes presents the most interesting problem in optimal linear codes, because length optimal codes are simultaneously distance optimal and dimension optimal. In this article, we focus on finding 5-dimensional length optimal codes. We prove the nonexistence of 5-dimensional Griesmer code, and it is proved <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mn>5</mn><mo>,</mo><mi>d</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mn>5</mn><mo>,</mo><mi>d</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for <span><math><mn>3</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>−</mo><mn>4</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mi>a</mi><mi>q</mi><mo>+</mo><mn>1</mn><mo>≤</mo><mi>d</mi><mo>≤</mo><mn>3</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>−</mo><mn>4</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mi>q</mi></math></span> with <span><math><mn>1</mn><mo>≤</mo><mi>a</mi><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>q</mi><mo>+</mo><mn>1</mn><mo>⌋</mo></math></span> and <span><math><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>−</mo><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>≤</mo><mi>d</mi><mo>≤</mo><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>−</mo><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with <span><math><mi>q</mi><mo>≥</mo><mn>5</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 3","pages":"Article 114324"},"PeriodicalIF":0.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the minimum length of linear codes of dimension 5\",\"authors\":\"E.J. Cheon ,&nbsp;S.J. Kim ,&nbsp;W. Kuranaka ,&nbsp;T. Maruta\",\"doi\":\"10.1016/j.disc.2024.114324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A fundamental problem in coding theory is to find the exact value <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span>, the minimum length <em>n</em> for which an <span><math><msub><mrow><mo>[</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>d</mi><mo>]</mo></mrow><mrow><mi>q</mi></mrow></msub></math></span> code exists for given <span><math><mi>q</mi><mo>,</mo><mi>k</mi></math></span> and <em>d</em>. The code of length <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>k</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> is called length optimal. Finding length optimal codes presents the most interesting problem in optimal linear codes, because length optimal codes are simultaneously distance optimal and dimension optimal. In this article, we focus on finding 5-dimensional length optimal codes. We prove the nonexistence of 5-dimensional Griesmer code, and it is proved <span><math><msub><mrow><mi>n</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mn>5</mn><mo>,</mo><mi>d</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mn>5</mn><mo>,</mo><mi>d</mi><mo>)</mo><mo>+</mo><mn>1</mn></math></span> for <span><math><mn>3</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>−</mo><mn>4</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mi>a</mi><mi>q</mi><mo>+</mo><mn>1</mn><mo>≤</mo><mi>d</mi><mo>≤</mo><mn>3</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>−</mo><mn>4</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mi>q</mi></math></span> with <span><math><mn>1</mn><mo>≤</mo><mi>a</mi><mo>≤</mo><mo>⌊</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mi>q</mi><mo>+</mo><mn>1</mn><mo>⌋</mo></math></span> and <span><math><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>−</mo><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>≤</mo><mi>d</mi><mo>≤</mo><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>−</mo><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>2</mn><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with <span><math><mi>q</mi><mo>≥</mo><mn>5</mn></math></span>.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 3\",\"pages\":\"Article 114324\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004552\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004552","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

编码理论中的一个基本问题是找到精确值 nq(k,d),即给定 q、k 和 d 时存在 [n,k,d]q 码的最小长度 n。寻找长度最优编码是最优线性编码中最有趣的问题,因为长度最优编码同时是距离最优编码和维数最优编码。在本文中,我们重点研究寻找 5 维长度最优编码。我们证明了五维格里斯梅尔码的不存在性,并证明了对于 1≤a≤⌊23q+1⌋ 的 3q4-4q3-aq+1≤d≤3q4-4q3-q 和 q≥5 的 2q4-2q3-2q2-q+1≤d≤2q4-2q3-2q2 ,nq(5,d)=gq(5,d)+1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the minimum length of linear codes of dimension 5
A fundamental problem in coding theory is to find the exact value nq(k,d), the minimum length n for which an [n,k,d]q code exists for given q,k and d. The code of length nq(k,d) is called length optimal. Finding length optimal codes presents the most interesting problem in optimal linear codes, because length optimal codes are simultaneously distance optimal and dimension optimal. In this article, we focus on finding 5-dimensional length optimal codes. We prove the nonexistence of 5-dimensional Griesmer code, and it is proved nq(5,d)=gq(5,d)+1 for 3q44q3aq+1d3q44q3q with 1a23q+1 and 2q42q32q2q+1d2q42q32q2 with q5.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信