Umate Nachiket Shankar, Sowmya Andole , Kousamvita Das , Mohd Shiraz , Mohd Akif
{"title":"钩端螺旋体补体调节剂获取蛋白 A 的生物物理特征和结构见解","authors":"Umate Nachiket Shankar, Sowmya Andole , Kousamvita Das , Mohd Shiraz , Mohd Akif","doi":"10.1016/j.bbrc.2024.151003","DOIUrl":null,"url":null,"abstract":"<div><div>Many pathogens establish a successful infection by evading the host complement system, an essential arm of innate immunity. Pathogenic <em>Leptospira</em> is reported to escape complement-mediated killing by recruiting the host complement regulators by lipoproteins or outer surface proteins. One of the outer surface proteins, Leptospiral complement regulator-acquiring protein A (LcpA), is known to recruit complement regulators, C4b-binding protein (C4BP), and Factor H (FH) on the bacterial surface. Mapping of interacting domains from C4BP and FH with the LcpA has already been reported. However, the region or structural part of the LcpA mediating the interaction is not known yet. Here, we report cloning, expression, refolding and purification of recombinant LcpA from an inclusion body of <em>E. coli</em> heterologous expression system. We also demonstrate the biophysical characterization of recombinant LcpA and reveal its secondary structure contents. Moreover, the protein displays a moderate thermostability. The change of intrinsic fluorescence and CD spectra demonstrate a change in the secondary structure of protein due to binding with Zn<sup>2+</sup> ions. Molecular docking of LcpA with the complement regulators displays important interface residues from both the individual counterparts. Molecular dynamic simulation analysis demonstrates the stability of interactions between LcpA and C4BP. In our understanding, this is the first report on the large-scale purification of LcpA through refolding experiments and biophysical characterization of LcpA. This study may provide additional information on the structural basis of binding with the complement regulators.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"739 ","pages":"Article 151003"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biophysical characterization and structural insights of leptospiral complement regulator-acquiring protein A\",\"authors\":\"Umate Nachiket Shankar, Sowmya Andole , Kousamvita Das , Mohd Shiraz , Mohd Akif\",\"doi\":\"10.1016/j.bbrc.2024.151003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many pathogens establish a successful infection by evading the host complement system, an essential arm of innate immunity. Pathogenic <em>Leptospira</em> is reported to escape complement-mediated killing by recruiting the host complement regulators by lipoproteins or outer surface proteins. One of the outer surface proteins, Leptospiral complement regulator-acquiring protein A (LcpA), is known to recruit complement regulators, C4b-binding protein (C4BP), and Factor H (FH) on the bacterial surface. Mapping of interacting domains from C4BP and FH with the LcpA has already been reported. However, the region or structural part of the LcpA mediating the interaction is not known yet. Here, we report cloning, expression, refolding and purification of recombinant LcpA from an inclusion body of <em>E. coli</em> heterologous expression system. We also demonstrate the biophysical characterization of recombinant LcpA and reveal its secondary structure contents. Moreover, the protein displays a moderate thermostability. The change of intrinsic fluorescence and CD spectra demonstrate a change in the secondary structure of protein due to binding with Zn<sup>2+</sup> ions. Molecular docking of LcpA with the complement regulators displays important interface residues from both the individual counterparts. Molecular dynamic simulation analysis demonstrates the stability of interactions between LcpA and C4BP. In our understanding, this is the first report on the large-scale purification of LcpA through refolding experiments and biophysical characterization of LcpA. This study may provide additional information on the structural basis of binding with the complement regulators.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"739 \",\"pages\":\"Article 151003\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24015390\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24015390","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Biophysical characterization and structural insights of leptospiral complement regulator-acquiring protein A
Many pathogens establish a successful infection by evading the host complement system, an essential arm of innate immunity. Pathogenic Leptospira is reported to escape complement-mediated killing by recruiting the host complement regulators by lipoproteins or outer surface proteins. One of the outer surface proteins, Leptospiral complement regulator-acquiring protein A (LcpA), is known to recruit complement regulators, C4b-binding protein (C4BP), and Factor H (FH) on the bacterial surface. Mapping of interacting domains from C4BP and FH with the LcpA has already been reported. However, the region or structural part of the LcpA mediating the interaction is not known yet. Here, we report cloning, expression, refolding and purification of recombinant LcpA from an inclusion body of E. coli heterologous expression system. We also demonstrate the biophysical characterization of recombinant LcpA and reveal its secondary structure contents. Moreover, the protein displays a moderate thermostability. The change of intrinsic fluorescence and CD spectra demonstrate a change in the secondary structure of protein due to binding with Zn2+ ions. Molecular docking of LcpA with the complement regulators displays important interface residues from both the individual counterparts. Molecular dynamic simulation analysis demonstrates the stability of interactions between LcpA and C4BP. In our understanding, this is the first report on the large-scale purification of LcpA through refolding experiments and biophysical characterization of LcpA. This study may provide additional information on the structural basis of binding with the complement regulators.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics