Jianing Luo , Karthik Panchabikesan , Kee-hung Lai , Timothy O. Olawumi , Modupe Cecilia Mewomo , Zhengxuan Liu
{"title":"基于博弈论的优化策略,在建设屋顶光伏微电网时实现终端用户和供应商的利润最大化","authors":"Jianing Luo , Karthik Panchabikesan , Kee-hung Lai , Timothy O. Olawumi , Modupe Cecilia Mewomo , Zhengxuan Liu","doi":"10.1016/j.energy.2024.133715","DOIUrl":null,"url":null,"abstract":"<div><div>Rooftop photovoltaic (PV) with battery storage offers a promising avenue for enhancing renewable energy integration in buildings. Creating microgrids with backup power from closely spaced solar buildings is widely recognized as an effective strategy. Nevertheless, a notable gap exists between the preferences and priorities of electricity consumers residing in these solar-powered buildings and the interests of microgrid investors. The electricity consumers focus on decreasing the levelized cost of energy, while the microgrid investors focuses on achieving high net profit. This study proposes a novel game theory-based microgrid optimal design approach for designing power generations of the microgrid system and PV installation with battery storage on the building roofs, considering the different requirements and interests of electricity consumers and microgrid investors. The design optimization is framed around the Nash Equilibrium of the Stackelberg game, incorporating a bi-level optimization cycle that addresses the conflict and cooperation of electricity consumers and microgrid investors. A win-win situation can be yielded using the developed optimal design approach compared to conventional optimal design approaches. The results demonstrate a significant improvement, with the microgrid power generation yielding a large net profit (up to 0.08 USD/kWh) and concurrently reducing the levelized cost of energy by approximately 14 %.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133715"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Game-theoretic optimization strategy for maximizing profits to both end-users and suppliers in building rooftop PV-based microgrids\",\"authors\":\"Jianing Luo , Karthik Panchabikesan , Kee-hung Lai , Timothy O. Olawumi , Modupe Cecilia Mewomo , Zhengxuan Liu\",\"doi\":\"10.1016/j.energy.2024.133715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rooftop photovoltaic (PV) with battery storage offers a promising avenue for enhancing renewable energy integration in buildings. Creating microgrids with backup power from closely spaced solar buildings is widely recognized as an effective strategy. Nevertheless, a notable gap exists between the preferences and priorities of electricity consumers residing in these solar-powered buildings and the interests of microgrid investors. The electricity consumers focus on decreasing the levelized cost of energy, while the microgrid investors focuses on achieving high net profit. This study proposes a novel game theory-based microgrid optimal design approach for designing power generations of the microgrid system and PV installation with battery storage on the building roofs, considering the different requirements and interests of electricity consumers and microgrid investors. The design optimization is framed around the Nash Equilibrium of the Stackelberg game, incorporating a bi-level optimization cycle that addresses the conflict and cooperation of electricity consumers and microgrid investors. A win-win situation can be yielded using the developed optimal design approach compared to conventional optimal design approaches. The results demonstrate a significant improvement, with the microgrid power generation yielding a large net profit (up to 0.08 USD/kWh) and concurrently reducing the levelized cost of energy by approximately 14 %.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"313 \",\"pages\":\"Article 133715\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544224034935\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224034935","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Game-theoretic optimization strategy for maximizing profits to both end-users and suppliers in building rooftop PV-based microgrids
Rooftop photovoltaic (PV) with battery storage offers a promising avenue for enhancing renewable energy integration in buildings. Creating microgrids with backup power from closely spaced solar buildings is widely recognized as an effective strategy. Nevertheless, a notable gap exists between the preferences and priorities of electricity consumers residing in these solar-powered buildings and the interests of microgrid investors. The electricity consumers focus on decreasing the levelized cost of energy, while the microgrid investors focuses on achieving high net profit. This study proposes a novel game theory-based microgrid optimal design approach for designing power generations of the microgrid system and PV installation with battery storage on the building roofs, considering the different requirements and interests of electricity consumers and microgrid investors. The design optimization is framed around the Nash Equilibrium of the Stackelberg game, incorporating a bi-level optimization cycle that addresses the conflict and cooperation of electricity consumers and microgrid investors. A win-win situation can be yielded using the developed optimal design approach compared to conventional optimal design approaches. The results demonstrate a significant improvement, with the microgrid power generation yielding a large net profit (up to 0.08 USD/kWh) and concurrently reducing the levelized cost of energy by approximately 14 %.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.