利用方镁石纳米粒子揭示多频铁磁共振的不饱和模式

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
M.S. Pessoa , M.A. Sousa , P.S. Moscon , J.R.C. Proveti , L.C. Merino , P.C. Morais , F. Pelegrini , M. Parise , L.C. Figueiredo , E. Baggio-Saitovitch
{"title":"利用方镁石纳米粒子揭示多频铁磁共振的不饱和模式","authors":"M.S. Pessoa ,&nbsp;M.A. Sousa ,&nbsp;P.S. Moscon ,&nbsp;J.R.C. Proveti ,&nbsp;L.C. Merino ,&nbsp;P.C. Morais ,&nbsp;F. Pelegrini ,&nbsp;M. Parise ,&nbsp;L.C. Figueiredo ,&nbsp;E. Baggio-Saitovitch","doi":"10.1016/j.physb.2024.416736","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports on the use of ferromagnetic resonance (FMR), at various microwave frequencies (1.1 GHz, 3.5 GHz, 9.4 GHz, and 33.9 GHz), to investigate nanosized maghemite-based (γ-Fe<sub>2</sub>O<sub>3</sub>) samples in both powder (P) and aqueous-based magnetic fluid (MF) presentations. The structure of the as-synthesized sample was confirmed through x-ray diffraction (XRD), revealing the maghemite phase with average diameter of about 12 nm. Analyses of the room temperature (RT) FMR spectra suggest that the samples are in a non-saturated state for microwave frequencies below about 10 GHz (X-band). Comparisons between theoretical modelling (acceptable) parameters and those obtained through fittings of the experimental data revealed significant discrepancies, highlighting an increase in divergence as the measurement condition deviates from the magnetic saturation condition, taking place at microwave frequencies below about 10 GHz.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"697 ","pages":"Article 416736"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling unsaturated modes from multi-frequency ferromagnetic resonance using maghemite nanoparticles\",\"authors\":\"M.S. Pessoa ,&nbsp;M.A. Sousa ,&nbsp;P.S. Moscon ,&nbsp;J.R.C. Proveti ,&nbsp;L.C. Merino ,&nbsp;P.C. Morais ,&nbsp;F. Pelegrini ,&nbsp;M. Parise ,&nbsp;L.C. Figueiredo ,&nbsp;E. Baggio-Saitovitch\",\"doi\":\"10.1016/j.physb.2024.416736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study reports on the use of ferromagnetic resonance (FMR), at various microwave frequencies (1.1 GHz, 3.5 GHz, 9.4 GHz, and 33.9 GHz), to investigate nanosized maghemite-based (γ-Fe<sub>2</sub>O<sub>3</sub>) samples in both powder (P) and aqueous-based magnetic fluid (MF) presentations. The structure of the as-synthesized sample was confirmed through x-ray diffraction (XRD), revealing the maghemite phase with average diameter of about 12 nm. Analyses of the room temperature (RT) FMR spectra suggest that the samples are in a non-saturated state for microwave frequencies below about 10 GHz (X-band). Comparisons between theoretical modelling (acceptable) parameters and those obtained through fittings of the experimental data revealed significant discrepancies, highlighting an increase in divergence as the measurement condition deviates from the magnetic saturation condition, taking place at microwave frequencies below about 10 GHz.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"697 \",\"pages\":\"Article 416736\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452624010779\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624010779","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本研究报告了在不同的微波频率(1.1 GHz、3.5 GHz、9.4 GHz 和 33.9 GHz)下使用铁磁共振 (FMR) 研究粉末 (P) 和水基磁性流体 (MF) 两种形式的纳米级方镁石 (γ-Fe2O3)样品。通过 X 射线衍射 (XRD) 确认了合成样品的结构,显示出平均直径约为 12 纳米的菱镁矿相。对室温(RT)调频反射光谱的分析表明,样品在低于约 10 GHz(X 波段)的微波频率下处于非饱和状态。将理论建模(可接受)参数与通过实验数据拟合获得的参数进行比较,发现两者之间存在显著差异,这突出表明,当测量条件偏离磁饱和状态时,差异会增大,这发生在微波频率低于约 10 千兆赫时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling unsaturated modes from multi-frequency ferromagnetic resonance using maghemite nanoparticles
This study reports on the use of ferromagnetic resonance (FMR), at various microwave frequencies (1.1 GHz, 3.5 GHz, 9.4 GHz, and 33.9 GHz), to investigate nanosized maghemite-based (γ-Fe2O3) samples in both powder (P) and aqueous-based magnetic fluid (MF) presentations. The structure of the as-synthesized sample was confirmed through x-ray diffraction (XRD), revealing the maghemite phase with average diameter of about 12 nm. Analyses of the room temperature (RT) FMR spectra suggest that the samples are in a non-saturated state for microwave frequencies below about 10 GHz (X-band). Comparisons between theoretical modelling (acceptable) parameters and those obtained through fittings of the experimental data revealed significant discrepancies, highlighting an increase in divergence as the measurement condition deviates from the magnetic saturation condition, taking place at microwave frequencies below about 10 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信