{"title":"新型海洋热能转换(OTEC)-空气调节(AC)系统的热力学和环境性能实验研究","authors":"Yibo Zhou, Wenzhong Gao, Yuan Zhang, Zhen Tian, Fei Wang, Runbo Gao","doi":"10.1016/j.energy.2024.133760","DOIUrl":null,"url":null,"abstract":"<div><div>In the field of isolated island energy supply, the OTEC system is considered promising due to its large storage capacity, and pollution-free characteristics. To improve energy efficiency, polygeneration systems have gradually become a research hotspot for their low cost and high return features. In this context, a novel Ocean Thermal Energy Conversion system integrated with an air conditioning unit (OTEC-AC) is introduced, demonstrating capabilities in electricity, cooling capacity, and fresh water production by experiments. The effects of various flow rates and temperatures of the heat and cold sources, along with the air-conditioning system water flow rate on the system performance is explored. Besides, the overall performance of the OTEC-AC is compared with four representative OTEC models. The results indicate that there is a threshold for the influence of cold and heat source flow rate on the performance of power generation system. The OTEC-AC system shows a highest net power of 132.6 W, cooling capacity of 2.14 kW, condensate production of 3.24 kg/h, and achieves a system exergy efficiency and CO<sub>2</sub> reduction of 34.7 % and 5801 kg/year, respectively. The annual CO<sub>2</sub> reduction per kilowatt of installed capacity of the system is increased by 135.6 %, compared with the conventional OTEC system.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133760"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on thermodynamic and environmental performance of a novel ocean thermal energy conversion (OTEC)-Air conditioning (AC) system\",\"authors\":\"Yibo Zhou, Wenzhong Gao, Yuan Zhang, Zhen Tian, Fei Wang, Runbo Gao\",\"doi\":\"10.1016/j.energy.2024.133760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the field of isolated island energy supply, the OTEC system is considered promising due to its large storage capacity, and pollution-free characteristics. To improve energy efficiency, polygeneration systems have gradually become a research hotspot for their low cost and high return features. In this context, a novel Ocean Thermal Energy Conversion system integrated with an air conditioning unit (OTEC-AC) is introduced, demonstrating capabilities in electricity, cooling capacity, and fresh water production by experiments. The effects of various flow rates and temperatures of the heat and cold sources, along with the air-conditioning system water flow rate on the system performance is explored. Besides, the overall performance of the OTEC-AC is compared with four representative OTEC models. The results indicate that there is a threshold for the influence of cold and heat source flow rate on the performance of power generation system. The OTEC-AC system shows a highest net power of 132.6 W, cooling capacity of 2.14 kW, condensate production of 3.24 kg/h, and achieves a system exergy efficiency and CO<sub>2</sub> reduction of 34.7 % and 5801 kg/year, respectively. The annual CO<sub>2</sub> reduction per kilowatt of installed capacity of the system is increased by 135.6 %, compared with the conventional OTEC system.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"313 \",\"pages\":\"Article 133760\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544224035382\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224035382","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
在孤岛能源供应领域,有机热电联产系统因其储量大、无污染等特点而被认为前景广阔。为了提高能源效率,多联产系统以其低成本、高回报的特点逐渐成为研究热点。在此背景下,本文介绍了一种新型海洋热能转换系统,该系统与空调装置(OTEC-AC)集成,通过实验展示了其在发电、制冷和淡水生产方面的能力。实验探讨了各种冷热源流速和温度以及空调系统水流量对系统性能的影响。此外,还将 OTEC-AC 的整体性能与四个具有代表性的 OTEC 模型进行了比较。结果表明,冷热源流量对发电系统性能的影响存在一个临界值。OTEC-AC 系统的最高净功率为 132.6 W,制冷量为 2.14 kW,冷凝水产量为 3.24 kg/h,系统能效和二氧化碳减排量分别为 34.7 % 和 5801 kg/年。与传统的 OTEC 系统相比,该系统每千瓦装机容量的二氧化碳年减排量提高了 135.6%。
Experimental investigation on thermodynamic and environmental performance of a novel ocean thermal energy conversion (OTEC)-Air conditioning (AC) system
In the field of isolated island energy supply, the OTEC system is considered promising due to its large storage capacity, and pollution-free characteristics. To improve energy efficiency, polygeneration systems have gradually become a research hotspot for their low cost and high return features. In this context, a novel Ocean Thermal Energy Conversion system integrated with an air conditioning unit (OTEC-AC) is introduced, demonstrating capabilities in electricity, cooling capacity, and fresh water production by experiments. The effects of various flow rates and temperatures of the heat and cold sources, along with the air-conditioning system water flow rate on the system performance is explored. Besides, the overall performance of the OTEC-AC is compared with four representative OTEC models. The results indicate that there is a threshold for the influence of cold and heat source flow rate on the performance of power generation system. The OTEC-AC system shows a highest net power of 132.6 W, cooling capacity of 2.14 kW, condensate production of 3.24 kg/h, and achieves a system exergy efficiency and CO2 reduction of 34.7 % and 5801 kg/year, respectively. The annual CO2 reduction per kilowatt of installed capacity of the system is increased by 135.6 %, compared with the conventional OTEC system.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.