Mohammad Zoghi, Saleh Gharaie, Nasser Hosseinzadeh, Ali Zare
{"title":"用于绿色氢燃料 SOFC 的太阳能、生物质、地热和风力发电系统的 4E 分析和优化比较","authors":"Mohammad Zoghi, Saleh Gharaie, Nasser Hosseinzadeh, Ali Zare","doi":"10.1016/j.energy.2024.133740","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating renewable energies with hydrogen production via electrolysis and utilizing hydrogen as a fuel for solid oxide fuel cells (SOFCs) presents a synergistic approach towards sustainable energy generation. This coupling offers enhanced flexibility, allowing for efficient energy storage and distribution, thereby addressing intermittency issues associated with renewable sources. Additionally, the utilization of hydrogen in SOFCs enables high-efficiency power generation with reduced emissions, contributing to the transition towards a cleaner energy landscape. In the present study, four types of renewable energies, namely solar, biomass, geothermal, and wind, produce hydrogen by coupling power generation units and a proton exchange membrane electrolyzer (PEME). Then, the produced hydrogen is stored and used for later utilization in an SOFC subsystem. A 4E (energy, exergy, exergy-economic, and environmental) study is conducted for the proposed systems through a sensitivity study and design optimization. In the best output performance mode, the best exergy efficiency is obtained by the biomass-based system, which is equal to 9.40 %, and the lowest values for total cost rate and unit cost of outputs are achievable by the geothermal-based system, with values of 27.72 $/h and 43.23 $/GJ.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133740"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4E analysis and optimization comparison of solar, biomass, geothermal, and wind power systems for green hydrogen-fueled SOFCs\",\"authors\":\"Mohammad Zoghi, Saleh Gharaie, Nasser Hosseinzadeh, Ali Zare\",\"doi\":\"10.1016/j.energy.2024.133740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Integrating renewable energies with hydrogen production via electrolysis and utilizing hydrogen as a fuel for solid oxide fuel cells (SOFCs) presents a synergistic approach towards sustainable energy generation. This coupling offers enhanced flexibility, allowing for efficient energy storage and distribution, thereby addressing intermittency issues associated with renewable sources. Additionally, the utilization of hydrogen in SOFCs enables high-efficiency power generation with reduced emissions, contributing to the transition towards a cleaner energy landscape. In the present study, four types of renewable energies, namely solar, biomass, geothermal, and wind, produce hydrogen by coupling power generation units and a proton exchange membrane electrolyzer (PEME). Then, the produced hydrogen is stored and used for later utilization in an SOFC subsystem. A 4E (energy, exergy, exergy-economic, and environmental) study is conducted for the proposed systems through a sensitivity study and design optimization. In the best output performance mode, the best exergy efficiency is obtained by the biomass-based system, which is equal to 9.40 %, and the lowest values for total cost rate and unit cost of outputs are achievable by the geothermal-based system, with values of 27.72 $/h and 43.23 $/GJ.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"313 \",\"pages\":\"Article 133740\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544224035187\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224035187","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
4E analysis and optimization comparison of solar, biomass, geothermal, and wind power systems for green hydrogen-fueled SOFCs
Integrating renewable energies with hydrogen production via electrolysis and utilizing hydrogen as a fuel for solid oxide fuel cells (SOFCs) presents a synergistic approach towards sustainable energy generation. This coupling offers enhanced flexibility, allowing for efficient energy storage and distribution, thereby addressing intermittency issues associated with renewable sources. Additionally, the utilization of hydrogen in SOFCs enables high-efficiency power generation with reduced emissions, contributing to the transition towards a cleaner energy landscape. In the present study, four types of renewable energies, namely solar, biomass, geothermal, and wind, produce hydrogen by coupling power generation units and a proton exchange membrane electrolyzer (PEME). Then, the produced hydrogen is stored and used for later utilization in an SOFC subsystem. A 4E (energy, exergy, exergy-economic, and environmental) study is conducted for the proposed systems through a sensitivity study and design optimization. In the best output performance mode, the best exergy efficiency is obtained by the biomass-based system, which is equal to 9.40 %, and the lowest values for total cost rate and unit cost of outputs are achievable by the geothermal-based system, with values of 27.72 $/h and 43.23 $/GJ.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.