Liang Ren , Yajuan Wu , Yan Gong , Qinghua Guo , Guangsuo Yu , Fuchen Wang
{"title":"煤气化细渣氧化富碳组分蒸汽气化的实验和动力学研究","authors":"Liang Ren , Yajuan Wu , Yan Gong , Qinghua Guo , Guangsuo Yu , Fuchen Wang","doi":"10.1016/j.energy.2024.133711","DOIUrl":null,"url":null,"abstract":"<div><div>Gasification is an important method to realize the resource utilization of coal gasification fine slag (CGFS). In this work, the carbon-rich fraction (CF) of CGFS was modified by oxidation, and the gasification reactivities, structures, and kinetics of samples were studied. The results demonstrate that compared to CF, the gasification characteristic temperatures of oxidized CF are lower, the weight loss rates are faster, and the gasification reactivities are significantly enhanced. These improvements are attributed to the structural evolutions of oxidized CF. Compared with CF, the specific surface area and pore volume of oxidized CF increase by at least 2.5 and 1.5 times, the proportions of oxygen-containing groups rise, and the carbon microstructure of different oxidized CF varies significantly. CF oxidized by steam exhibits the most developed porosity and the most disordered carbon microstructure, corresponding to the highest gasification reactivity of all the samples. The kinetics results showcase that the diffusion reaction model is suitable for describing the gasification process of samples, so porosity emerged as the primary factor determining the gasification reactivity. However, the influence of carbon microstructure and active groups on the gasification reactivity of oxidized CF is enhanced when the porosity meets the diffusion requirements of the gasification reaction.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133711"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and kinetic studies on steam gasification of oxidized carbon-rich fraction from coal gasification fine slag\",\"authors\":\"Liang Ren , Yajuan Wu , Yan Gong , Qinghua Guo , Guangsuo Yu , Fuchen Wang\",\"doi\":\"10.1016/j.energy.2024.133711\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gasification is an important method to realize the resource utilization of coal gasification fine slag (CGFS). In this work, the carbon-rich fraction (CF) of CGFS was modified by oxidation, and the gasification reactivities, structures, and kinetics of samples were studied. The results demonstrate that compared to CF, the gasification characteristic temperatures of oxidized CF are lower, the weight loss rates are faster, and the gasification reactivities are significantly enhanced. These improvements are attributed to the structural evolutions of oxidized CF. Compared with CF, the specific surface area and pore volume of oxidized CF increase by at least 2.5 and 1.5 times, the proportions of oxygen-containing groups rise, and the carbon microstructure of different oxidized CF varies significantly. CF oxidized by steam exhibits the most developed porosity and the most disordered carbon microstructure, corresponding to the highest gasification reactivity of all the samples. The kinetics results showcase that the diffusion reaction model is suitable for describing the gasification process of samples, so porosity emerged as the primary factor determining the gasification reactivity. However, the influence of carbon microstructure and active groups on the gasification reactivity of oxidized CF is enhanced when the porosity meets the diffusion requirements of the gasification reaction.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"313 \",\"pages\":\"Article 133711\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544224034893\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224034893","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental and kinetic studies on steam gasification of oxidized carbon-rich fraction from coal gasification fine slag
Gasification is an important method to realize the resource utilization of coal gasification fine slag (CGFS). In this work, the carbon-rich fraction (CF) of CGFS was modified by oxidation, and the gasification reactivities, structures, and kinetics of samples were studied. The results demonstrate that compared to CF, the gasification characteristic temperatures of oxidized CF are lower, the weight loss rates are faster, and the gasification reactivities are significantly enhanced. These improvements are attributed to the structural evolutions of oxidized CF. Compared with CF, the specific surface area and pore volume of oxidized CF increase by at least 2.5 and 1.5 times, the proportions of oxygen-containing groups rise, and the carbon microstructure of different oxidized CF varies significantly. CF oxidized by steam exhibits the most developed porosity and the most disordered carbon microstructure, corresponding to the highest gasification reactivity of all the samples. The kinetics results showcase that the diffusion reaction model is suitable for describing the gasification process of samples, so porosity emerged as the primary factor determining the gasification reactivity. However, the influence of carbon microstructure and active groups on the gasification reactivity of oxidized CF is enhanced when the porosity meets the diffusion requirements of the gasification reaction.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.