抛物问题的无网格广义多尺度指数积分法

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Djulustan Nikiforov , Leonardo A. Poveda , Dmitry Ammosov , Yesy Sarmiento , Juan Galvis
{"title":"抛物问题的无网格广义多尺度指数积分法","authors":"Djulustan Nikiforov ,&nbsp;Leonardo A. Poveda ,&nbsp;Dmitry Ammosov ,&nbsp;Yesy Sarmiento ,&nbsp;Juan Galvis","doi":"10.1016/j.cam.2024.116367","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers flow problems in multiscale heterogeneous porous media. The multiscale nature of the modeled process significantly complicates numerical simulations due to the need to compute huge and ill-conditioned sparse matrices, which negatively affect both the computational cost and the stability of the numerical solution. We propose a novel combined approach of the meshfree Generalized Multiscale Finite Element Method (MFGMsFEM) and exponential time integration for solving such problems. MFGMsFEM provides a robust and efficient spatial approximation, allowing us to consider complex heterogeneities without constructing a coarse computational grid. At the same time, using the cost-effective MFGMsFEM matrix, exponential integration provides a robust temporal approximation for stiff multiscale problems, allowing larger time steps. For the proposed multiscale approach, we provide a rigorous convergence analysis, including the new analysis of the MFGMsFEM spatial approximation. We conduct numerical experiments to computationally verify the proposed approach by solving linear and semi-linear flow problems in multiscale media. Numerical results demonstrate that the proposed multiscale method achieves significant reductions in computational cost and improved stability, even with larger time steps, confirming the theoretical analysis.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"459 ","pages":"Article 116367"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meshfree generalized multiscale exponential integration method for parabolic problems\",\"authors\":\"Djulustan Nikiforov ,&nbsp;Leonardo A. Poveda ,&nbsp;Dmitry Ammosov ,&nbsp;Yesy Sarmiento ,&nbsp;Juan Galvis\",\"doi\":\"10.1016/j.cam.2024.116367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper considers flow problems in multiscale heterogeneous porous media. The multiscale nature of the modeled process significantly complicates numerical simulations due to the need to compute huge and ill-conditioned sparse matrices, which negatively affect both the computational cost and the stability of the numerical solution. We propose a novel combined approach of the meshfree Generalized Multiscale Finite Element Method (MFGMsFEM) and exponential time integration for solving such problems. MFGMsFEM provides a robust and efficient spatial approximation, allowing us to consider complex heterogeneities without constructing a coarse computational grid. At the same time, using the cost-effective MFGMsFEM matrix, exponential integration provides a robust temporal approximation for stiff multiscale problems, allowing larger time steps. For the proposed multiscale approach, we provide a rigorous convergence analysis, including the new analysis of the MFGMsFEM spatial approximation. We conduct numerical experiments to computationally verify the proposed approach by solving linear and semi-linear flow problems in multiscale media. Numerical results demonstrate that the proposed multiscale method achieves significant reductions in computational cost and improved stability, even with larger time steps, confirming the theoretical analysis.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"459 \",\"pages\":\"Article 116367\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724006150\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724006150","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究多尺度异质多孔介质中的流动问题。由于需要计算庞大且条件不佳的稀疏矩阵,建模过程的多尺度性质使数值模拟变得非常复杂,这对计算成本和数值解的稳定性都产生了负面影响。我们提出了一种新颖的无网格广义多尺度有限元法(MFGMsFEM)与指数时间积分相结合的方法来解决此类问题。MFGMsFEM 提供了一种稳健高效的空间近似方法,使我们能够在不构建粗计算网格的情况下考虑复杂的异质性。同时,利用经济高效的 MFGMsFEM 矩阵,指数积分为僵硬的多尺度问题提供了稳健的时间近似,允许更大的时间步长。对于所提出的多尺度方法,我们提供了严格的收敛性分析,包括对 MFGMsFEM 空间近似的新分析。我们进行了数值实验,通过求解多尺度介质中的线性和半线性流动问题,对所提出的方法进行了计算验证。数值结果表明,所提出的多尺度方法显著降低了计算成本,提高了稳定性,即使时间步长较大也不例外,从而证实了理论分析的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meshfree generalized multiscale exponential integration method for parabolic problems
This paper considers flow problems in multiscale heterogeneous porous media. The multiscale nature of the modeled process significantly complicates numerical simulations due to the need to compute huge and ill-conditioned sparse matrices, which negatively affect both the computational cost and the stability of the numerical solution. We propose a novel combined approach of the meshfree Generalized Multiscale Finite Element Method (MFGMsFEM) and exponential time integration for solving such problems. MFGMsFEM provides a robust and efficient spatial approximation, allowing us to consider complex heterogeneities without constructing a coarse computational grid. At the same time, using the cost-effective MFGMsFEM matrix, exponential integration provides a robust temporal approximation for stiff multiscale problems, allowing larger time steps. For the proposed multiscale approach, we provide a rigorous convergence analysis, including the new analysis of the MFGMsFEM spatial approximation. We conduct numerical experiments to computationally verify the proposed approach by solving linear and semi-linear flow problems in multiscale media. Numerical results demonstrate that the proposed multiscale method achieves significant reductions in computational cost and improved stability, even with larger time steps, confirming the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信