一般多边形网格上非线性抛物问题的双网格虚拟元素法误差分析

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaohui Wu , Yanping Chen , Yang Wang
{"title":"一般多边形网格上非线性抛物问题的双网格虚拟元素法误差分析","authors":"Xiaohui Wu ,&nbsp;Yanping Chen ,&nbsp;Yang Wang","doi":"10.1016/j.cam.2024.116369","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present a two-grid virtual element method to solve the nonlinear parabolic problem. The nonlinear terms <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> are approximated by using the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> orthogonal projection, and the fine-grid discrete form is enhanced by Newton iteration. We first prove the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm error estimate for the fully discrete problem. Furthermore, the a priori error estimates of two-grid method in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>- and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norms achieve the optimal order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup><mo>+</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>+</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup><mo>+</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span>, respectively. Finally, we used two numerical examples to validate our two-grid algorithm, which is consistent with our theoretical results.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"459 ","pages":"Article 116369"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error analysis of two-grid virtual element method for nonlinear parabolic problems on general polygonal meshes\",\"authors\":\"Xiaohui Wu ,&nbsp;Yanping Chen ,&nbsp;Yang Wang\",\"doi\":\"10.1016/j.cam.2024.116369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present a two-grid virtual element method to solve the nonlinear parabolic problem. The nonlinear terms <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> are approximated by using the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> orthogonal projection, and the fine-grid discrete form is enhanced by Newton iteration. We first prove the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm error estimate for the fully discrete problem. Furthermore, the a priori error estimates of two-grid method in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>- and <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norms achieve the optimal order <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup><mo>+</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>+</mo><msup><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msup><mo>+</mo><mi>τ</mi><mo>)</mo></mrow></mrow></math></span>, respectively. Finally, we used two numerical examples to validate our two-grid algorithm, which is consistent with our theoretical results.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"459 \",\"pages\":\"Article 116369\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724006174\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724006174","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种解决非线性抛物线问题的双网格虚拟元素方法。非线性项 f(u) 通过 L2 正交投影近似,细网格离散形式通过牛顿迭代增强。我们首先证明了完全离散问题的 H1 准则误差估计。此外,双网格法在 L2 和 H1 规范下的先验误差估计分别达到了最优阶 O(hk+1+H2k+τ) 和 O(hk+H2k+τ)。最后,我们用两个数值实例验证了我们的双网格算法,这与我们的理论结果是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error analysis of two-grid virtual element method for nonlinear parabolic problems on general polygonal meshes
In this paper, we present a two-grid virtual element method to solve the nonlinear parabolic problem. The nonlinear terms f(u) are approximated by using the L2 orthogonal projection, and the fine-grid discrete form is enhanced by Newton iteration. We first prove the H1-norm error estimate for the fully discrete problem. Furthermore, the a priori error estimates of two-grid method in the L2- and H1-norms achieve the optimal order O(hk+1+H2k+τ) and O(hk+H2k+τ), respectively. Finally, we used two numerical examples to validate our two-grid algorithm, which is consistent with our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信