分析蜂群智能工具对储能系统定位的适用性和结果

IF 5 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Asier Divasson-J , Itxaso Aranzabal Santamaria , Miren T. Bedialauneta Landaribar , Paula Castillo Aguirre
{"title":"分析蜂群智能工具对储能系统定位的适用性和结果","authors":"Asier Divasson-J ,&nbsp;Itxaso Aranzabal Santamaria ,&nbsp;Miren T. Bedialauneta Landaribar ,&nbsp;Paula Castillo Aguirre","doi":"10.1016/j.ijepes.2024.110343","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of renewable energy is transforming traditional energy systems, blurring the distinction between producers and consumers and shifting towards a distributed grid network. This change demands innovative approaches to optimize Energy Storage Systems (ESS) and manage grid incidents efficiently, all without significant infrastructural changes. While optimization algorithms like Swarm Intelligence are gaining traction, critical aspects, such as worst-case scenario analysis in distribution networks, remain underexplored. This study addresses this gap by applying stochastic optimization techniques to determine the optimal placement and capacity of ESS in a medium voltage radial distribution system, using the IEEE 33-bus model. The findings highlight the importance of considering worst-case scenarios, offering a balanced evaluation of current methodologies. This research provides valuable insights for improving system flexibility and resilience, contributing to more effective and practical energy optimization strategies in real-world applications.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"163 ","pages":"Article 110343"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the applicability and results of swarm intelligence tools for the positioning of Energy Storage Systems\",\"authors\":\"Asier Divasson-J ,&nbsp;Itxaso Aranzabal Santamaria ,&nbsp;Miren T. Bedialauneta Landaribar ,&nbsp;Paula Castillo Aguirre\",\"doi\":\"10.1016/j.ijepes.2024.110343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integration of renewable energy is transforming traditional energy systems, blurring the distinction between producers and consumers and shifting towards a distributed grid network. This change demands innovative approaches to optimize Energy Storage Systems (ESS) and manage grid incidents efficiently, all without significant infrastructural changes. While optimization algorithms like Swarm Intelligence are gaining traction, critical aspects, such as worst-case scenario analysis in distribution networks, remain underexplored. This study addresses this gap by applying stochastic optimization techniques to determine the optimal placement and capacity of ESS in a medium voltage radial distribution system, using the IEEE 33-bus model. The findings highlight the importance of considering worst-case scenarios, offering a balanced evaluation of current methodologies. This research provides valuable insights for improving system flexibility and resilience, contributing to more effective and practical energy optimization strategies in real-world applications.</div></div>\",\"PeriodicalId\":50326,\"journal\":{\"name\":\"International Journal of Electrical Power & Energy Systems\",\"volume\":\"163 \",\"pages\":\"Article 110343\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical Power & Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142061524005660\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical Power & Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142061524005660","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源的整合正在改变传统的能源系统,模糊了生产者和消费者之间的区别,并向分布式电网网络转变。这种变化要求采用创新方法来优化储能系统(ESS)并有效管理电网事故,而所有这一切都无需对基础设施进行重大改造。虽然像蜂群智能这样的优化算法正受到越来越多的关注,但配电网络中的最坏情况分析等关键方面仍未得到充分探索。本研究针对这一空白,采用随机优化技术,利用 IEEE 33 总线模型,确定中压径向配电系统中 ESS 的最佳位置和容量。研究结果强调了考虑最坏情况的重要性,并对当前方法进行了平衡评估。这项研究为提高系统灵活性和恢复能力提供了宝贵的见解,有助于在实际应用中制定更有效、更实用的能源优化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the applicability and results of swarm intelligence tools for the positioning of Energy Storage Systems
The integration of renewable energy is transforming traditional energy systems, blurring the distinction between producers and consumers and shifting towards a distributed grid network. This change demands innovative approaches to optimize Energy Storage Systems (ESS) and manage grid incidents efficiently, all without significant infrastructural changes. While optimization algorithms like Swarm Intelligence are gaining traction, critical aspects, such as worst-case scenario analysis in distribution networks, remain underexplored. This study addresses this gap by applying stochastic optimization techniques to determine the optimal placement and capacity of ESS in a medium voltage radial distribution system, using the IEEE 33-bus model. The findings highlight the importance of considering worst-case scenarios, offering a balanced evaluation of current methodologies. This research provides valuable insights for improving system flexibility and resilience, contributing to more effective and practical energy optimization strategies in real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical Power & Energy Systems
International Journal of Electrical Power & Energy Systems 工程技术-工程:电子与电气
CiteScore
12.10
自引率
17.30%
发文量
1022
审稿时长
51 days
期刊介绍: The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces. As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信