抽水蓄热-液态空气储能系统的动态特性:建模、分析和优化

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Wei Ai , Liang Wang , Xipeng Lin , Yakai Bai , Jingjian Huang , Jiexiang Hu , Haisheng Chen
{"title":"抽水蓄热-液态空气储能系统的动态特性:建模、分析和优化","authors":"Wei Ai ,&nbsp;Liang Wang ,&nbsp;Xipeng Lin ,&nbsp;Yakai Bai ,&nbsp;Jingjian Huang ,&nbsp;Jiexiang Hu ,&nbsp;Haisheng Chen","doi":"10.1016/j.energy.2024.133776","DOIUrl":null,"url":null,"abstract":"<div><div>Pumped thermal-liquid air energy storage (PTLAES) is a novel energy storage technology that combines pumped thermal- and liquid air energy storage and eliminates the need for cold storage. However, existing studies on this system are all based on steady-state assumption, lacking dynamic analysis and optimization to better understand the system's performance under cyclic operation. To fill this gap, the mainbody-linearized cyclic dynamic model of the PTLAES system with packed bed thermal energy storage (TES) was first developed. Then, the dynamic characteristics of the baseline system were investigated. Sensitivity analyses were carried out on TES parameters. Minimal values of levelized cost of storage (LCOS) were observed for all parameters in the range of interest. Subsequently, the TES circuit was optimized, and a triple improvement of efficiency and energy density enhancement, discharge stabilization, and cost reduction was achieved. The optimized system's round-trip efficiency and energy density increased from 61.7 % to 63.1 % and from 141.9 kWh/m³ to 159.2 kWh/m³, and the LCOS decreased from 163.2 $/MWh to 159.4 $/MWh. A power offset ratio lower than 3 % was reached, which is the lowest value ever reported in the literature. This study provides reference for future design and operation of the PTLAES system.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133776"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic characteristics of pumped thermal-liquid air energy storage system: Modeling, analysis, and optimization\",\"authors\":\"Wei Ai ,&nbsp;Liang Wang ,&nbsp;Xipeng Lin ,&nbsp;Yakai Bai ,&nbsp;Jingjian Huang ,&nbsp;Jiexiang Hu ,&nbsp;Haisheng Chen\",\"doi\":\"10.1016/j.energy.2024.133776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pumped thermal-liquid air energy storage (PTLAES) is a novel energy storage technology that combines pumped thermal- and liquid air energy storage and eliminates the need for cold storage. However, existing studies on this system are all based on steady-state assumption, lacking dynamic analysis and optimization to better understand the system's performance under cyclic operation. To fill this gap, the mainbody-linearized cyclic dynamic model of the PTLAES system with packed bed thermal energy storage (TES) was first developed. Then, the dynamic characteristics of the baseline system were investigated. Sensitivity analyses were carried out on TES parameters. Minimal values of levelized cost of storage (LCOS) were observed for all parameters in the range of interest. Subsequently, the TES circuit was optimized, and a triple improvement of efficiency and energy density enhancement, discharge stabilization, and cost reduction was achieved. The optimized system's round-trip efficiency and energy density increased from 61.7 % to 63.1 % and from 141.9 kWh/m³ to 159.2 kWh/m³, and the LCOS decreased from 163.2 $/MWh to 159.4 $/MWh. A power offset ratio lower than 3 % was reached, which is the lowest value ever reported in the literature. This study provides reference for future design and operation of the PTLAES system.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"313 \",\"pages\":\"Article 133776\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544224035540\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224035540","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

抽水蓄热-液态空气储能(PTLAES)是一种新型储能技术,它将抽水蓄热和液态空气储能结合在一起,无需冷库。然而,现有关于该系统的研究都是基于稳态假设,缺乏动态分析和优化,无法更好地了解系统在循环运行下的性能。为了填补这一空白,我们首先开发了带填料床热能储存(TES)的 PTLAES 系统的主体线性化循环动态模型。然后,研究了基线系统的动态特性。对 TES 参数进行了敏感性分析。观察到所有参数在相关范围内的平准化储能成本(LCOS)均为最小值。随后,对 TES 电路进行了优化,实现了提高效率和能量密度、稳定放电和降低成本的三重改进。优化系统的往返效率和能量密度分别从 61.7% 和 141.9 kWh/m³ 提高到 63.1% 和 159.2 kWh/m³,LCOS 从 163.2 美元/MWh 降至 159.4 美元/MWh。功率偏移比低于 3%,是文献报道的最低值。这项研究为 PTLAES 系统今后的设计和运行提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic characteristics of pumped thermal-liquid air energy storage system: Modeling, analysis, and optimization

Dynamic characteristics of pumped thermal-liquid air energy storage system: Modeling, analysis, and optimization
Pumped thermal-liquid air energy storage (PTLAES) is a novel energy storage technology that combines pumped thermal- and liquid air energy storage and eliminates the need for cold storage. However, existing studies on this system are all based on steady-state assumption, lacking dynamic analysis and optimization to better understand the system's performance under cyclic operation. To fill this gap, the mainbody-linearized cyclic dynamic model of the PTLAES system with packed bed thermal energy storage (TES) was first developed. Then, the dynamic characteristics of the baseline system were investigated. Sensitivity analyses were carried out on TES parameters. Minimal values of levelized cost of storage (LCOS) were observed for all parameters in the range of interest. Subsequently, the TES circuit was optimized, and a triple improvement of efficiency and energy density enhancement, discharge stabilization, and cost reduction was achieved. The optimized system's round-trip efficiency and energy density increased from 61.7 % to 63.1 % and from 141.9 kWh/m³ to 159.2 kWh/m³, and the LCOS decreased from 163.2 $/MWh to 159.4 $/MWh. A power offset ratio lower than 3 % was reached, which is the lowest value ever reported in the literature. This study provides reference for future design and operation of the PTLAES system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信