动态城市窗口视图内容对视图满意度影响的情境评估

IF 7.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Simeon N. Ingabo, Ying-Chieh Chan
{"title":"动态城市窗口视图内容对视图满意度影响的情境评估","authors":"Simeon N. Ingabo,&nbsp;Ying-Chieh Chan","doi":"10.1016/j.buildenv.2024.112303","DOIUrl":null,"url":null,"abstract":"<div><div>Movement is a preferred attribute in window views, but identifying the ideal amount of movement for different space types remains challenging. This study examined the impact of movement in urban window views on view satisfaction in four spaces: office, living room, restaurant and classroom. Fifty dynamic urban window views were recorded at 30 frames per second, and movement was quantified by examining the percentage of pixels that exhibited intensity changes between successive video frames. Window view compositional ratios were determined through semantic segmentation using a pretrained DeepLabv3+ model. Fifty participants evaluated the movement and view satisfaction in a virtual reality survey. Movement was sufficient when average change in the view after every 1/30 s ranged between 2 % to 8 % during the viewing period. Correlation analysis revealed that the strongest indicators of excessive, insufficient and sufficient movement are Ratio of Human-associated Dynamic Objects (RHDO), Building Ratio (BR), and Greenery Ratio (GR), respectively. It was established that occupants can tolerate higher movement and RHDO in restaurants and offices than in living rooms and classrooms. These insights can inform the allocation of space in mixed-use buildings. The movement quantification method can also be incorporated into other dynamic window view evaluation frameworks.</div></div>","PeriodicalId":9273,"journal":{"name":"Building and Environment","volume":"267 ","pages":"Article 112303"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contextual evaluation of the impact of dynamic urban window view content on view satisfaction\",\"authors\":\"Simeon N. Ingabo,&nbsp;Ying-Chieh Chan\",\"doi\":\"10.1016/j.buildenv.2024.112303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Movement is a preferred attribute in window views, but identifying the ideal amount of movement for different space types remains challenging. This study examined the impact of movement in urban window views on view satisfaction in four spaces: office, living room, restaurant and classroom. Fifty dynamic urban window views were recorded at 30 frames per second, and movement was quantified by examining the percentage of pixels that exhibited intensity changes between successive video frames. Window view compositional ratios were determined through semantic segmentation using a pretrained DeepLabv3+ model. Fifty participants evaluated the movement and view satisfaction in a virtual reality survey. Movement was sufficient when average change in the view after every 1/30 s ranged between 2 % to 8 % during the viewing period. Correlation analysis revealed that the strongest indicators of excessive, insufficient and sufficient movement are Ratio of Human-associated Dynamic Objects (RHDO), Building Ratio (BR), and Greenery Ratio (GR), respectively. It was established that occupants can tolerate higher movement and RHDO in restaurants and offices than in living rooms and classrooms. These insights can inform the allocation of space in mixed-use buildings. The movement quantification method can also be incorporated into other dynamic window view evaluation frameworks.</div></div>\",\"PeriodicalId\":9273,\"journal\":{\"name\":\"Building and Environment\",\"volume\":\"267 \",\"pages\":\"Article 112303\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building and Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360132324011454\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360132324011454","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

移动是窗景的首选属性,但确定不同空间类型的理想移动量仍具有挑战性。本研究考察了城市橱窗视图中的运动对办公室、起居室、餐厅和教室四个空间视图满意度的影响。研究人员以每秒 30 帧的速度录制了 50 幅动态城市橱窗视图,并通过检查连续视频帧之间强度变化的像素百分比来量化移动情况。通过使用预训练的 DeepLabv3+ 模型进行语义分割,确定橱窗视图的构成比例。50 名参与者在虚拟现实调查中对移动和视图满意度进行了评估。在观看过程中,每 1/30 秒后视图的平均变化范围在 2 % 到 8 % 之间时,移动就足够了。相关性分析表明,与人相关的动态物体比率(RHDO)、建筑比率(BR)和绿化比率(GR)分别是运动过度、运动不足和运动充分的最强指标。研究结果表明,与起居室和教室相比,餐厅和办公室中的居住者可以忍受更高的活动量和动态物体比率。这些见解可以为混合用途建筑的空间分配提供参考。移动量化方法也可纳入其他动态窗景评估框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contextual evaluation of the impact of dynamic urban window view content on view satisfaction
Movement is a preferred attribute in window views, but identifying the ideal amount of movement for different space types remains challenging. This study examined the impact of movement in urban window views on view satisfaction in four spaces: office, living room, restaurant and classroom. Fifty dynamic urban window views were recorded at 30 frames per second, and movement was quantified by examining the percentage of pixels that exhibited intensity changes between successive video frames. Window view compositional ratios were determined through semantic segmentation using a pretrained DeepLabv3+ model. Fifty participants evaluated the movement and view satisfaction in a virtual reality survey. Movement was sufficient when average change in the view after every 1/30 s ranged between 2 % to 8 % during the viewing period. Correlation analysis revealed that the strongest indicators of excessive, insufficient and sufficient movement are Ratio of Human-associated Dynamic Objects (RHDO), Building Ratio (BR), and Greenery Ratio (GR), respectively. It was established that occupants can tolerate higher movement and RHDO in restaurants and offices than in living rooms and classrooms. These insights can inform the allocation of space in mixed-use buildings. The movement quantification method can also be incorporated into other dynamic window view evaluation frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Building and Environment
Building and Environment 工程技术-工程:环境
CiteScore
12.50
自引率
23.00%
发文量
1130
审稿时长
27 days
期刊介绍: Building and Environment, an international journal, is dedicated to publishing original research papers, comprehensive review articles, editorials, and short communications in the fields of building science, urban physics, and human interaction with the indoor and outdoor built environment. The journal emphasizes innovative technologies and knowledge verified through measurement and analysis. It covers environmental performance across various spatial scales, from cities and communities to buildings and systems, fostering collaborative, multi-disciplinary research with broader significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信