Rodrigo L.M.S. Oliveira , Lucas Barbosa , Thaís C. Pereira , Luísa R.M. Dona , Thiago G. Tabuti , Dayane B. Tada , Eduardo R. Triboni , Luciane D. de Oliveira , Eliandra S. Trichês
{"title":"涂有氧化锌和氧化铜纳米颗粒的β-磷酸三钙/生物活性玻璃多功能支架","authors":"Rodrigo L.M.S. Oliveira , Lucas Barbosa , Thaís C. Pereira , Luísa R.M. Dona , Thiago G. Tabuti , Dayane B. Tada , Eduardo R. Triboni , Luciane D. de Oliveira , Eliandra S. Trichês","doi":"10.1016/j.nwnano.2024.100059","DOIUrl":null,"url":null,"abstract":"<div><div>Incorporating nanoparticles into scaffolds with regenerative potential is a promissory strategy to provide them with antimicrobial activity. Bioceramics, such as β-tricalcium phosphate (β-TCP) and bioactive glasses (BGs), stand out among synthetic materials for bone regeneration. In this context, we report the incorporation of zinc oxide (ZnO) and copper oxide/copper nitrate (CuO/Cu<sub>2</sub>H<sub>3</sub>NO<sub>5</sub>) nanoparticles onto the surface of the β-TCP/BG scaffolds. This report addresses the physicochemical characterization of the scaffolds, their antimicrobial activity, and their response to MC3T3-E1 cells. Our findings show that the incorporation of both nanoparticles effectively inhibited <em>S. aureus</em> growth<em>,</em> including its biofilm formation. While the presence of the nanoparticles initially decreased MC3T3-E1 cell viability, cell proliferation improved with prolonged incubation. Overall, the β-TCP/BG_Zn and β-TCP/BG_Cu scaffolds showed an early antimicrobial response, aiding infection eradication, while also supporting cell proliferation over time.</div></div>","PeriodicalId":100942,"journal":{"name":"Nano Trends","volume":"8 ","pages":"Article 100059"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional scaffolds of β-tricalcium phosphate/bioactive glass coated with zinc oxide and copper oxide nanoparticles\",\"authors\":\"Rodrigo L.M.S. Oliveira , Lucas Barbosa , Thaís C. Pereira , Luísa R.M. Dona , Thiago G. Tabuti , Dayane B. Tada , Eduardo R. Triboni , Luciane D. de Oliveira , Eliandra S. Trichês\",\"doi\":\"10.1016/j.nwnano.2024.100059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Incorporating nanoparticles into scaffolds with regenerative potential is a promissory strategy to provide them with antimicrobial activity. Bioceramics, such as β-tricalcium phosphate (β-TCP) and bioactive glasses (BGs), stand out among synthetic materials for bone regeneration. In this context, we report the incorporation of zinc oxide (ZnO) and copper oxide/copper nitrate (CuO/Cu<sub>2</sub>H<sub>3</sub>NO<sub>5</sub>) nanoparticles onto the surface of the β-TCP/BG scaffolds. This report addresses the physicochemical characterization of the scaffolds, their antimicrobial activity, and their response to MC3T3-E1 cells. Our findings show that the incorporation of both nanoparticles effectively inhibited <em>S. aureus</em> growth<em>,</em> including its biofilm formation. While the presence of the nanoparticles initially decreased MC3T3-E1 cell viability, cell proliferation improved with prolonged incubation. Overall, the β-TCP/BG_Zn and β-TCP/BG_Cu scaffolds showed an early antimicrobial response, aiding infection eradication, while also supporting cell proliferation over time.</div></div>\",\"PeriodicalId\":100942,\"journal\":{\"name\":\"Nano Trends\",\"volume\":\"8 \",\"pages\":\"Article 100059\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666978124000291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666978124000291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multifunctional scaffolds of β-tricalcium phosphate/bioactive glass coated with zinc oxide and copper oxide nanoparticles
Incorporating nanoparticles into scaffolds with regenerative potential is a promissory strategy to provide them with antimicrobial activity. Bioceramics, such as β-tricalcium phosphate (β-TCP) and bioactive glasses (BGs), stand out among synthetic materials for bone regeneration. In this context, we report the incorporation of zinc oxide (ZnO) and copper oxide/copper nitrate (CuO/Cu2H3NO5) nanoparticles onto the surface of the β-TCP/BG scaffolds. This report addresses the physicochemical characterization of the scaffolds, their antimicrobial activity, and their response to MC3T3-E1 cells. Our findings show that the incorporation of both nanoparticles effectively inhibited S. aureus growth, including its biofilm formation. While the presence of the nanoparticles initially decreased MC3T3-E1 cell viability, cell proliferation improved with prolonged incubation. Overall, the β-TCP/BG_Zn and β-TCP/BG_Cu scaffolds showed an early antimicrobial response, aiding infection eradication, while also supporting cell proliferation over time.