Haifa Alali , Yong-Le Pan , Aimable Kalume , Yongxiang Hu , Yehor Surkov , Yuriy Shkuratov , Gorden Videen , Chuji Wang
{"title":"测量单个光学捕获生物颗粒的圆强度微分散射(CIDS)","authors":"Haifa Alali , Yong-Le Pan , Aimable Kalume , Yongxiang Hu , Yehor Surkov , Yuriy Shkuratov , Gorden Videen , Chuji Wang","doi":"10.1016/j.jqsrt.2024.109244","DOIUrl":null,"url":null,"abstract":"<div><div>The circular intensity differential scattering (CIDS), which is the normalized Mueller matrix element -S<sub>14</sub>/S<sub>11</sub>, has been measured from single biological particles as a function of scattering angle. CIDS is valuable for its potential in detecting chiral particles that may include the helical structures of DNA or RNA molecules in biological samples, and as such is a potential method for detecting biological particles. Optical trapping is employed to levitate single particles within a custom-designed elliptical reflector for CIDS measurements. The advantage of optical levitation in light-scattering measurements is that single particles can be suspended in air with sufficient working distance to prevent interference from the suspending apparatus. To measure the phase function, the reflector is used to collect the angle-dependent scattering signals. We demonstrated that we can obtain two-dimensional angular optical scattering (TAOS) patterns that cover a wide angular range from single levitated particles. These TAOS patterns are generated using 532 nm illumination of left-handed and right-handed circular polarizations and recorded from trapped single particles (silica, English Oak, Ragweed, Mulberry, Glycine, and <span>l</span>-Aspartic acid).</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"330 ","pages":"Article 109244"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of circular intensity differential scattering (CIDS) from single optically trapped biological particles\",\"authors\":\"Haifa Alali , Yong-Le Pan , Aimable Kalume , Yongxiang Hu , Yehor Surkov , Yuriy Shkuratov , Gorden Videen , Chuji Wang\",\"doi\":\"10.1016/j.jqsrt.2024.109244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The circular intensity differential scattering (CIDS), which is the normalized Mueller matrix element -S<sub>14</sub>/S<sub>11</sub>, has been measured from single biological particles as a function of scattering angle. CIDS is valuable for its potential in detecting chiral particles that may include the helical structures of DNA or RNA molecules in biological samples, and as such is a potential method for detecting biological particles. Optical trapping is employed to levitate single particles within a custom-designed elliptical reflector for CIDS measurements. The advantage of optical levitation in light-scattering measurements is that single particles can be suspended in air with sufficient working distance to prevent interference from the suspending apparatus. To measure the phase function, the reflector is used to collect the angle-dependent scattering signals. We demonstrated that we can obtain two-dimensional angular optical scattering (TAOS) patterns that cover a wide angular range from single levitated particles. These TAOS patterns are generated using 532 nm illumination of left-handed and right-handed circular polarizations and recorded from trapped single particles (silica, English Oak, Ragweed, Mulberry, Glycine, and <span>l</span>-Aspartic acid).</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"330 \",\"pages\":\"Article 109244\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407324003510\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324003510","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Measurement of circular intensity differential scattering (CIDS) from single optically trapped biological particles
The circular intensity differential scattering (CIDS), which is the normalized Mueller matrix element -S14/S11, has been measured from single biological particles as a function of scattering angle. CIDS is valuable for its potential in detecting chiral particles that may include the helical structures of DNA or RNA molecules in biological samples, and as such is a potential method for detecting biological particles. Optical trapping is employed to levitate single particles within a custom-designed elliptical reflector for CIDS measurements. The advantage of optical levitation in light-scattering measurements is that single particles can be suspended in air with sufficient working distance to prevent interference from the suspending apparatus. To measure the phase function, the reflector is used to collect the angle-dependent scattering signals. We demonstrated that we can obtain two-dimensional angular optical scattering (TAOS) patterns that cover a wide angular range from single levitated particles. These TAOS patterns are generated using 532 nm illumination of left-handed and right-handed circular polarizations and recorded from trapped single particles (silica, English Oak, Ragweed, Mulberry, Glycine, and l-Aspartic acid).
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.