具有输出注入和输出差分的非线性多输入多输出可观测正则表达式

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Jie Liu , Driss Boutat , Da-Yan Liu , Xue-Feng Zhang
{"title":"具有输出注入和输出差分的非线性多输入多输出可观测正则表达式","authors":"Jie Liu ,&nbsp;Driss Boutat ,&nbsp;Da-Yan Liu ,&nbsp;Xue-Feng Zhang","doi":"10.1016/j.amc.2024.129174","DOIUrl":null,"url":null,"abstract":"<div><div>This research note establishes a specific framework for transforming nonlinear multi-input and multi-output diffeomorphism systems into extended observable normal forms without using differential geometry techniques. For this purpose, the nonlinear MIMO systems whose nonlinear terms do not need to be Lipschitz, are proposed. First, a change of coordinates is designed to eliminate the square items and coupled items for each nonlinear dynamical subsystem. Second, coupled auxiliary dynamics are constructed to transform the nonlinear multi-input and multi-output diffeomorphism systems into extended observable normal forms such that the finite-time and robust step-by-step sliding mode observer can be applied. Then, the state variables for the considered nonlinear dynamical systems are estimated by using the inverse of the transformations. Finally, the validity of the proposed design methods is verified by two numerical examples.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"489 ","pages":"Article 129174"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear MIMO observable normal forms with output injection and output diffeomorphism\",\"authors\":\"Jie Liu ,&nbsp;Driss Boutat ,&nbsp;Da-Yan Liu ,&nbsp;Xue-Feng Zhang\",\"doi\":\"10.1016/j.amc.2024.129174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research note establishes a specific framework for transforming nonlinear multi-input and multi-output diffeomorphism systems into extended observable normal forms without using differential geometry techniques. For this purpose, the nonlinear MIMO systems whose nonlinear terms do not need to be Lipschitz, are proposed. First, a change of coordinates is designed to eliminate the square items and coupled items for each nonlinear dynamical subsystem. Second, coupled auxiliary dynamics are constructed to transform the nonlinear multi-input and multi-output diffeomorphism systems into extended observable normal forms such that the finite-time and robust step-by-step sliding mode observer can be applied. Then, the state variables for the considered nonlinear dynamical systems are estimated by using the inverse of the transformations. Finally, the validity of the proposed design methods is verified by two numerical examples.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"489 \",\"pages\":\"Article 129174\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324006350\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006350","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究论文建立了一个特定框架,无需使用微分几何技术,即可将非线性多输入和多输出差分系统转化为扩展的可观测正则表达式。为此,本文提出了非线性 MIMO 系统,其非线性项无需为 Lipschitz。首先,设计了一种坐标变化,以消除每个非线性动力学子系统的平方项和耦合项。其次,构建耦合辅助动力学,将非线性多输入和多输出差分系统转化为扩展的可观测正态形式,从而应用有限时间和鲁棒逐步滑模观测器。然后,利用逆变换估计所考虑的非线性动力系统的状态变量。最后,通过两个数值示例验证了所提设计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear MIMO observable normal forms with output injection and output diffeomorphism
This research note establishes a specific framework for transforming nonlinear multi-input and multi-output diffeomorphism systems into extended observable normal forms without using differential geometry techniques. For this purpose, the nonlinear MIMO systems whose nonlinear terms do not need to be Lipschitz, are proposed. First, a change of coordinates is designed to eliminate the square items and coupled items for each nonlinear dynamical subsystem. Second, coupled auxiliary dynamics are constructed to transform the nonlinear multi-input and multi-output diffeomorphism systems into extended observable normal forms such that the finite-time and robust step-by-step sliding mode observer can be applied. Then, the state variables for the considered nonlinear dynamical systems are estimated by using the inverse of the transformations. Finally, the validity of the proposed design methods is verified by two numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信